30.09.2019

Из каких металлов строят космические корабли, бороздящие бескрайние просторы вселенной. Интересные факты и полезные советы


За последние годы космос вновь стал тем, о чем все чаще говорят. О нем говорят везде - в новостях, газетах, по радио и, в конце концов, просто дома на кухне. И стоит отметить, что говорят совсем не зря. Человечество в очередной раз обратило пристальное внимание на небеса и старается дотянуться если не до звезд, то до соседних планет уж точно. Однако если кто-то думает, что речь сегодня пойдет о чем-то астрономическом, то он ошибается, речь пойдет немного об ином, о металлах и сплавах.

Думаю, не стоит лишний раз напоминать, какое значение имеют достижения металлургов в деле развития космической программы человечества. А вот поговорить о том, что осваивая космос, перед металлургией открываются новые технологические возможности, не только можно, но и нужно. О каких возможностях идет речь? Да все и так понятно – в невесомости меняются не только процессы течения жидкостей, но и процессы теплопереноса, а стало быть, появилась возможность использовать новые, ранее не опробованные способы получения и переработки металлических материалов.

Так, например, под действием поверхностного натяжения, расплав принимает форму шара и свободно зависает в пространстве. Как в свое время показали советские и американские исследования, расплавленный метал (медь), за 3 секунды превращается в шар, который в диаметре составляет 10 сантиметров. Однако интересно не это, а то, что металл в итоге не загрязняется никакими примесями, что в земных условиях сделать практически невозможно.

Далее полученному шару придают необходимую форму с помощью электрических и магнитных полей. Интерес представляет еще один эксперимент американцев, благодаря которому удалось узнать, что в глубоком космосе некоторые материалы просто-напросто испаряются. В основном это кадмий, цинк и сплавы магния. А наиболее устойчивыми металлами оказались вольфрам, сталь, платина и как ни удивительно, титан.

Собственно, именно титан наиболее всего заслуживает внимания. Дело в том, что титан на сегодняшний день является одним из самых важных конструкционных материалов. Связанно это в первую очередь с сочетанием легкости этого металла с прочностью и тугоплавкостью. Ни для кого не секрет, что на основе титана было создано множество высокопрочных сплавов для авиации, судостроения и ракетной техники. Например, очень интересным свойством обладает сплав титана с никелем, который практически в прямом смысле «запоминает» свою форму. И если на холоде изделие из данного сплава можно сжимать в небольшой шар, то при нагревании, материал вновь приобретает первоначальный вид.

Узнавая все больше о свойствах металла в космосе и познавая новые металлургические возможности в получении отливок, некоторые бизнесмены забегают вперед в своих рассуждениях не только на словах. Еще писатели-фантасты вроде Айзека Азимова упоминали в своих произведениях реализацию добычи ископаемых не с родной Земли, а с астероидов. Эту идею долгое время вынашивали и обсуждали, считая, что добыча в космосе является заведомо не выгодным делом. Однако сколько людей, столько и мнений, поэтому буквально год назад стартовала новая космическая программа фонда X-Prize во главе с Питером Диамандисом, который считает, что выгоде быть. И пусть добычей металлов сразу заниматься X-Prize не планирует, однако он, возможно, станет настоящим пионером. Более подробно о задумке Диамандиса можно прочитать, просто кликнув сюда.

Мечты о колонизации космоса и добыче там природных ресурсов появились давно, но именно сегодня они становятся реальностью. В начале года компании и Deep Space Industries заявили о намерениях начать промышленное освоение космоса. Т&P разбираются, какие полезные ископаемые они собираются добывать, насколько эти проекты осуществимы и сможет ли космос стать новой Аляской для золотоискателей XXI века.

Если о промышленном освоении планет пока только мечтают, то с астероидами дела обстоят куда более оптимистично. В первую очередь речь идет только о самых ближайших к Земле объектах, да и то тех чья скорость не превышает порога первой космической . Что касается самих астероидов, то наиболее перспективными для добычи считаются, так называемые, астероиды M-класса, большая часть из которых почти целиком состоит из никеля и железа, а также астероиды S-класса, имеющие в своей породе силикаты железа и магния. Также исследователи предполагают, что на этих астероидах могут быть обнаружены залежи золота и металлов платиновой группы, последние же ввиду своей редкости на Земле представляет особый интерес. Для того чтобы представлять о каких цифрах идет речь: астероид средних размеров (диаметром порядка 1,5 километров) содержит металлов на 20 триллионов долларов.

Наконец, еще одна важнейшая цель космических золотоискателей - астероиды С-класса (примерно 75 процентов от всех астероидов Солнечной системы), на которых планируется добывать воду. По подсчетам, даже самые маленькие астероиды этой группы, диаметром в 7 метров, могут содержать в себе до 100 тонн воды. Недооценивать воду нельзя, не стоит забывать, что из нее можно получить водород, который затем использовать в качестве топлива. К тому же добыча воды непосредственно на астероидах позволит сэкономить деньги на ее доставку с Земли.

Что добывать в космосе

Платина - лакомый кусок для всех инвесторов. Именно за счет платины энтузиасты космической добычи ресурсов смогут окупить свои затраты.

От запасов воды будет зависеть работа всей добывающей станции. К тому же «водных» астероидов вблизи Земли больше всего: порядка 75 процентов.

Железо - важнейший металл современной промышленности, поэтому вполне очевидно, что на нем в первую очередь будет сконцентрированы усилия добытчиков.

Как добывать

Добывать на астероиде, после чего доставлять на Землю для переработки.

Фабрика по добыче полезных ископаемых строится непосредственно на поверхности астероида. Для этого необходимо разработать технологию удерживающую оборудование на поверхности астероида, так как из-за небольшой силы тяжести даже слабое физическое воздействие может легко оторвать конструкцию и унести ее в космос. Другая проблема этого способа - доставка сырья для последующей обработки, которая может обойтись очень дорого.

Система самовоспроизводящихся машин. Чтобы обеспечить работу производства без участия человека, предлагается вариант создания системы самовоспроизводящихся машин, каждая из которых за определенный срок собирает свою точную копию. В 80-е годы такой проект даже разрабатывался НАСА, правде речь тогда шла о поверхности Луны. Если за месяц такая машина будет способна собирать аналогичную себе, меньше чем через года таких машин будет больше тысячи, а через три более миллиарда. В качестве источника питания машин предлагается использовать энергию солнечных батарей.

Добывать и перерабатывать прямо на астероиде. Строить станции, обрабатывающие сырье на поверхности астероида. Достоинство этого способа в том, что он позволит значительно сэкономить средства на доставку ископаемых к месту добычи. Минусы - дополнительное оборудования, и соответственно, более высокая степень автоматизации.

Переместить астероид к Земле для последующей добычи. Притянуть астероид к Земле можно с помощью космического буксира, по принципу действия аналогичного тем, что доставляют сейчас спутники на орбиту Земли. Второй вариант - создание гравитационного буксира, технологии с помощью которой планируется защищать Землю от потенциально опасных астероидов. Буксир представляет собой небольшое тело, которое подходит вплотную к астероиду (на расстояние до 50 метров) и создает гравитационное возмущение, меняющее его траекторию. Третий вариант, самый смелый и неординарный - изменение альбедо (отражающей способности) астероида. Часть астероида накрывается пленкой или покрывается краской, после чего, согласно теоретическим выкладкам, из-за неравномерного нагрева поверхности Солнцем, скорость вращения астероида должна измениться.

Кто будет добывать

За создание отвечает американский бизнесмен Питер Диамантис, создатель фонда X-Prize . Ученый коллектив возглавляют бывшие сотрудники НАСА, а финансовую поддержку проекту оказывают Ларри Пейдж и Джеймс Кэмерон. Первичная задача компании - постройка телескопа Arkyd-100 , производство которого она оплачивает сама, а все пожертвования пойдут на обслуживание телескопа и непосредственно, запуск, намеченный на 2014 год. Планы у Arkyd-100 вполне скромны - компания рассчитывает испытать телескоп, а заодно сделать качественные снимки галактик, Луны, туманностей и прочих космических красот. Но уже последующие Arkyd-200 и Arkyd-300 будут заниматься конкретным поиском астероидов и подготовке к добыче сырья.

У руля Deep Space Industries стоит Рик Тамлинсон, приложивший руку к все-тому же фонду X-Prize, бывший сотрудник НАСА Джон Мэнкинс и австралийский ученый Марк Сонтер. Уже сейчас компания располагает двумя космическими аппаратами. Первый из них, FireFly, планируется к запуску в космос в 2015 году. Аппарат весит всего 25 килограмм и будет нацелен на поиск подходящих для будущего освоения астероидов, изучение их структуры, скорости вращения и других параметров. Второй, DragonFly, должен будет доставить куски астероидов массой 25-75 килограмм на Землю. Его запуск, согласно программе, осуществится в 2016 году. Главный секретное оружие Deep Space Industries - технология MicroGravity Foundry, микрогравитационный 3D-принтер, способный создавать высокоточные детали большой плотности в условиях малой гравитации. Уже к 2023 году компания рассчитывает на активную добычу на астероидах платины, железа, воды и газов.

НАСА тоже не стоит в стороне. К сентябрю 2016 года агентство планирует запустить аппарат OSIRIS-REX , который должен начать исследование астероида Бенну. Ориентировочно к концу 2018 году аппарат достигнет цели, возьмет пробу грунта и еще через два-три года вернется на Землю. В планах исследователей - проверить догадки о происхождении Солнечной системы, проследить за отклонением траектории астероида (существует, хоть и чрезвычайно малая, вероятность, что Бенну когда-нибудь может столкнуться с Землей), и, наконец, самое интересное: изучить грунт астероида на предмет полезных ископаемых.

Для анализа грунта на OSIRIS-REX будут работать 3 спектрометра: инфракрасный, тепловой и рентгеновский. Первый будет измерять инфракрасное излучение и искать углеродосодержащие материалы, второй - измерять температуру в поисках воды и глины. Третий - улавливать источники рентгеновского излучения для обнаружения металлов: прежде всего железа, магния и кремния.

Кому принадлежат космические ресурсы

Если глобальные планы компаний станут реальностью, встает еще один насущный вопрос: как будут разделяться права на добычу полезных ископаемых в космосе? Впервые этой проблемы коснулись еще в 1967 году, когда ООН приняла закон, запрещающий добычу ресурсов в космосе, пока компания-добытчик не представит де-факто захвата территории. О правах на сами ресурсы ничего сказано не было. Немного прояснил ситуацию документ ООН 1984 года, касающийся Луны. В нем заявлено, что «Луна и ее природные ресурсы являются общим наследием человечества», а использование ее ресурсов «должно осуществляться на благо и в интересах всех стран». При этом главные космические державы, СССР и США, этот документ проигнорировали и вопрос остался открытым до сегодняшнего дня.

Для решения вопроса некоторые специалисты предлагают взять за аналог систему, применяемую сейчас в Конвенции о международном морском праве, регулирующей добычу ископаемых с морского дна. Принципы ее более чем идеалистические - согласно конвенции, ни одно государство, так же как и частное лицо не может претендовать на право присвоения территории и ее ресурсов, эти права принадлежат всему человечеству, а сами ресурсы должны использоваться только в мирных целях. Но вряд ли это остановит агрессивную экспансию частных компаний. О характере будущей индустрии лучше всего высказался глава правления Deep Space Industries Рик Тамлинсон: «Существует миф, что впереди нас не ждет ничего хорошего и нам не на что надеяться. Этот миф существует только в умах верящих в него людей. Мы же убеждены, что это только начало».

Удивительными и, действительно, необычными технологиями пополнился арсенал человеческих возможностей. Когда-то первые приборы, которые работали от электричества:

  • делали нашу жизнь комфортной, упрощая работу множеством автоматических приборов,
  • обладали лишь базовым набором функциональных возможностей, но казались необычайно сложными изобретениями,
  • стали инновациями своего времени, позволив человеку стремиться к новым изобретениям.

После покорения бескрайнего космоса, развитие технологий вышло на совершенно новый уровень. Инвестиции позволили построить первые станции, специализирующиеся на выработке металлов, прямо на поверхности астероидов.

Станции превратились в небольшие, так называемые, заводы полностью автоматизированные. Они не перерабатывали полученные компоненты на ходу, зато сортировали материалы, по мере их ценности, пригодности для дальнейшего использования. Такое решение было вполне разумным, ведь переработку могли обеспечить и более простые технологии, широко распространенные на планете.

Робототехника должна была развиваться быстрее, чтобы успеть за другими космическими изобретениями. Здесь помогли идеи, построенные на уже существующих современных гаджетах. Поэтому роботы отличались плавностью движений, полностью контролируемым интерфейсом и множеством других преимуществ.

Доставка ресурсов на нашу планету так же упростилась. Подтверждением чему выступают последние экспедиции. Результатом стали полученные металлы. Они достались учёным цельными, практически не повреждёнными, даже при добычи образцы большинства, важных для развития металлургии в целом, металлов.

Астероиды - источник для добычи металлов!

Учёные всерьёз задумались о том, чтобы наладить добычу полезных ископаемых. Это удобнее всего сделать ближе к источнику, то есть прямо на поверхности астероидов.

Освоение астероидов, с последующими возможностями для организации эффективной работы по их выработке - главная задача современного производства. Подобные проекты обеспечат получение ресурсов различного спектра и назначения. Существует специальное название - промышленное освоение, характеризующее сам процесс получения пользы от изучения ещё неизведанных объектов, находящихся в космосе.

Не только астероиды пригодны для выполнения всех необходимых работ по добыче металлов и других подобных им веществ. В относительной близости к Земле находятся, буквально, миллионы космических объектов. А, если учесть большие по протяжённости пояса астероидов, запаса веществ на нашей планете хватит на несколько сотен лет. Некоторые космические тела так же пригодны для проведения добычи металлов, без нанесения вреда самим источникам полезных минералов и веществ.

Такие дорогостоящие металлы, как титан и никель, образуются естественным путём на благоприятных для этого участках земной поверхности. Космос не стал исключением, подарив учёным новые возможности для работы.

Зачастую, среди разнообразия материалов, которые можно найти в породах астероидов, встречается и железо. С одной стороны, его в достаточно большом количестве можно найти на нашей планете.

Но любые разновидности полезных ископаемых, даже самые распространенные на Земле, представляют собой основу для развития промышленностей на уровне государственного устройства. Но такие источники не вечны, поэтому уже сейчас следует задуматься о нахождении новых и альтернативных возможностей для добычи ресурсов. В этом плане космос безграничен:

  • для исследователей, проводящих пробы пород, с целью обнаружения богатых металлами мест.
  • в плане освоения неизученных ранее свойств элементов,
  • как вспомогательный элемент для производства.

Некоторые учёные даже сделали предположение о пользе изучения астероидов с точки зрения их состава. Утверждают, что астероиды содержат в себе все необходимые элементы, которые могут поспособствовать даже получению воды и кислорода.

Так же, смеси веществ, присутствующие в составе породы астероида, насыщены компонентами, из которых можно добыть даже водород. А это уже серьёзное подспорье, ведь этот компонент является основным "ингредиентом" ракетного топлива.

Но данная индустрия всё ещё является молодой, до конца неизученной отраслью. Налаживание производства подобного уровня, нуждается:

  • в дополнительных инвестициях,
  • грамотных вложениях денежных средств, непосредственно в производство новых технологий,
  • привлечении помощи других отраслей, специализирующихся на дальнейшей переработке металлов.

Грамотно построенная работа, которая будет налажена на всех последующих уровнях производства, сократит дополнительные расходы, например, на топливо для ракет, или зарядку роботов, увеличив тем самым общий доход.

Астероиды - кладезь редких металлов!

Ценовая политика таких проектов приобретает просто нереальный размах. Один астероид, даже сравнительно небольшой по своим размерам, - просто находка для современных технологов и учённых. Роботы могут, в некоторых случаях даже определить, какой слой породы отделяет их от желаемой находки.

Суммы, и в приблизительных подсчётах исчисляются в триллионах. Поэтому все затраты, безусловно, себя оправдают, причём в несколько раз. Прибыль, полученная от произведённых работ по добыче металлов, уходит на их дальнейшую обработку.

Большинство элементов, представлены в чистом виде. Но для некоторых понадобится участие вспомогательных растворов и смесей, преобразующих веществ к нужному состоянию. Трудно поверить, но такой драгоценный металл, как золото, присутствует в достаточном для добычи количестве.

Не знают, что большая часть золота, присутствующая в верхних слоях Земли, является своеобразными следами, когда-то упавших астероидов. Со временем планета и климатические условия на них менялась, преобразовывалась почва, а остатки астероидов смогли сохранить ценные, заключённые в них металлы.

Астероидные дожди поспособствовали тому, что тяжёлые вещества, в том числе металлы, подчинились силе гравитации, опустившись ближе к ядру планеты. Их выработка стала затруднительной. И вместо этого, учёные предположили, что целесообразнее всего вкладывать деньги в работу с астероидами, подобно тому, как ведётся добыча на Земле.

Будущее технологий за космосом!

Эволюция привела человека к пику своего развития, подарив ему множество различных изобретений. Но, тема космоса всё ещё остаётся не до конца раскрытой. Представьте себе, сколько потребуется вложить денежных средств, чтобы наладить работу по добыче на поверхности самого астероида.

Ещё одним фактором, из-за которого этот проект долго оставался в теории, стала проблема, возникающая с доставкой груза с металлами обратно на Землю. Подобная процедура могла занимать столько времени, что даже сама выработка стала бы не актуальной и очень дорогой. Но учёные нашли выход и из подобной ситуации. Были собраны специализированные роботы. При помощи механических действий человека, непосредственно подключённое к системе рота, он может направлять его движения, не испортив ценных образцов уже добытых материалов.

У робота в строении предусмотрен отсек, куда и помещаются собранные образцы. Далее они отправятся на Землю, где учёные проведут ряд тестирований, доказывающих ценность данного астероида на предмет содержания в нём полезных веществ.

Такая предварительная проверка необходима ещё и для большей уверенности в том, что работы по выработке металлов действительно нужны. Ведь в подобных отраслях всегда замешено колоссальное количество денежных средств.

Технологии будущего из прошлого!

Даже далёкий от науки человек понимает - ресурсы нашей планеты не бесконечны. А искать на Земле альтернативу существующим полезным веществам, а так же ископаемым, просто негде.

Современный мир, именно поэтому развивается стихийно, и вместе с тем сохраняет спокойный и размеренный темп человеческой жизни. Каждый эксперимент - отражение сущности учёного, его гениальных трудов, первых удачных экспериментов.

Но вспомним, как начиналась космическая лихорадка. Генератором идей стало произведение одного, очень известного в своё время фантаста. Тогда это казалось простой выдумкой, - сейчас стало вполне обыденной реальностью, привлекающей пристальное внимание учёных, стремящихся довести свои теоретические идеи до практического применения, приносящего пользу человечеству.

Технологии являются дорогостоящими, не просто найти достойных инвесторов, готовых рискнуть многим, ради положительного результата. Но проекты будущего необходимо развивать и внедрять в производство уже сейчас.

Чтобы не говорили учёные, но время полноценной добычи редких, дорогостоящих металлов прямо из космических просторов уже пришло.

Инновации требуют:

  • проверки временем,
  • грамотной организации производства,
  • изучения возможностей смежных отраслей, которые могут взаимовыгодно сотрудничать между собой.

Без вложений не будет отдачи, даже на минимальном уровне следует организация самого процесса работы и только потом - полученный результат, на который вы надеялись.

Как появились астероиды?

Если учёные смогут определить благоприятные условия, при которых образуются астероиды, то такие полезные источники можно будет создавать искусственным путём с помощью лабораторий, или, непосредственно в просторах космоса. Известно, что астероиды - это первоначальный материал, оставшийся после того, как наша Солнечная система была образована. Они распространены повсюду. Некоторые астероиды пролетают на очень близком расстоянии к Солнцу, другие курсируют по одним орбитам, образуя целые пояса астероидов. Между Юпитером, и расположенным в относительной близости к нему Марсом, присутствует наибольшее скопление астероидов.

Они представляют собой очень большую в плане ресурсов, ценность. Изучение астероидов с различной точки зрения, позволит проанализировать их структуру, поспособствует:

  • созданию базы для дальнейшего изучения космоса,
  • привлечению новых инвестиций в данную отрасль,
  • разработку специализированного оборудования, которое смогло бы работать в самых различных условиях.

Заниматься добычей металлов на астероидах значительно проще, ведь они распределены по всей поверхности космического объекта. Концентрация даже самых драгоценных и дорогих металлов равна той, которая представлена на Земле только в богатых месторождениях. Интерес к подобным видам работ, из-за их востребованности, возрастает с каждым днём.

Космонавты смогли сделать невозможный технологический прорыв в области технологических возможностей. Первые, взятые на поверхности астероидов образцы:

  • дали учёным общее представление о структуре астероидов,
  • помогли сделать их выработку более быстрой,
  • определили новые источники для получения металлов.

В ближайшем будущем технологии подобного уровня займут основное место среди производства. Если представить, даже чисто теоретически, что запасы астероидов безграничны, - то они могут поддерживать экономику целой планеты, позволяя ей развиваться в несколько раз быстрее.

Казалось бы, к чему ещё стремиться, когда человек покорил космические просторы? Но на практике, ещё далеко не все полезные свойства астероидов и других объектов, присутствующих в космосе, изучены полностью. То есть, можно будет наладить безотходное производство. Каждый элемент данной цепочки - не существует без влияния на него предыдущего. Особенно такой подход актуален, когда мы имеем дело с металлами. Их структура достаточно прочная, но если не придерживаться правильных условий для их добычи и эксплуатации, - ценный природный ресурс может испортиться.

Металлы из космоса - обыденная реальность нашего времени. Планируются новые проекты, основой которых станет получение воды и кислорода - жизненно необходимых нам компонентов.

Сидоркина Ксения

В данной работе раскрыта роль химии в освоении космоса.

Скачать:

Предварительный просмотр:

Введение

  1. Перспективы использования алюминия в космической отрасли.
  2. Титан и его сплавы в ракетостроении.
  3. Полимерные композиционные материалы в ракетостроении.
  4. Горючие металлы.
  5. Космический цех полупроводников.

Заключение

Введение

Пятьдесят лет назад, 12 апреля 1961 года, космонавт Юрий Гагарин вознёсся в небеса с бодрым криком "Поехали!", став первым человеком в Космосе. Стартовав тем солнечным утром на корабле "Восток 1" в 9 часов 6 минут из Казахстана, двадцатисемилетний сын плотника за 108 минут облетел вокруг Земли, катапультировался и удачно приземлился на парашюте в Саратовской области.

Полёт Гагарина, импульсом к которому было намерение утвердить технологическое превосходство над Соединёнными Штатами, стал одним из самых значительных достижений XX века. Это короткое по времени, но эпохальное по масштабам посягательство на небеса вдохновило миллионы людей Земли, а разгоревшаяся космическая гонка между мощнейшими державами подспудно вела к взаимному уничтожению.

Алексей Леонов, ещё один из двадцатки первого отряда советских космонавтов, считает: "Это самое лучшее соревнование в Космосе, которое когда-либо осуществляло человечество. "Лунная гонка" между СССР и США - достижение высочайших вершин науки и техники". И в этой космической гонке не последнюю роль сыграла наука химия. Созданные учеными-химиками конструкционные материалы, сверхмощное горючее, точнейшие приборы, инструменты и устройства обеспечивают работу космических кораблей и орбитальных станций. Поэтому цель данной работы: Раскрыть роль химии в освоении космоса.

  1. Перспективы использования алюминия в космической отрасли

Алюминий - один из космических «первопроходцев»: конструкторы первых спутников даже не задавались вопросом, какой именно металл использовать в конструкции своих аппаратов. Легкий и прочный алюминий - точнее, «самолетные сплавы», стали постоянными «участниками» космических проектов. Около половины веса современной ракеты приходится на алюминиевые конструкции, а шаттлы почти на 90% состоят из алюминиевых сплавов.

Неудивительно, что разработка новых технологий в обработке алюминия, усиление его показателей стойкости к высоким и низким температурам, вибрационным нагрузкам и воздействию радиации сегодня представляет собой не просто приоритетное, а стратегическое направление в металлургии. На сегодняшний день перспективы применения алюминия в космической отрасли связывают, прежде всего, с появлением новых сплавов, позволяющих снизить вес ракет, кораблей и станций, что, в свою очередь, обеспечит значительное сокращение топливных расходов при выводе агрегатов на орбиту и значительно расширит функциональность космических объектов.

Основная тенденция в области разработок космических материалов - создание гранулированных алюминиевых сплавов, которые обеспечивают практически тридцатипроцентное снижение веса узловых конструкций. Расширяется и диапазон рабочих температур - до 850 °С. За последние несколько лет было разработано несколько таких сплавов: специалисты объединяют их в класс интерметаллидов - это, как правило, сплавы титана, причем наиболее перспективными считаются варианты «титан-алюминий». Кроме титановых сплавов в ракетостроении применяются варианты «никель-алюминий» и «железо-хром-алюминий».

Однако есть и более интересные идеи по усилению свойств «ракетного» алюминия. Например, корейские исследователи, применив нанотехнологии, разработали так называемый «умный» алюминий - Smart Aluminum. Название, безусловно, спорно, однако все остальные характеристики нового материала сомнений не вызывают: пословам разработчиков, новый сплав в три раза прочнее обычных «космических» вариантов и примерно в сто раз прочнее стали. Ноу-хау корейцев - использование в алюминиевом сплаве углеродных нанотрубок. Выход первых изделий из нано-алюминия планируется к концу 2008 года, но уже сейчас ведущие мировые космические организации проявляют интерес к новому материалу, предрекая ему большое будущее.

  1. Титан и его сплавы в ракетостроении

Титановые сплавы являются одним из наиболее прочных конструкционных материалов, уступая по этому показателю только сплавам на основе бериллия. При этом они отличаются пластичностью, стойкостью к износу и истиранию. Они способны выдерживать воздействие некоторых активных кислот, а также солей и гидроксидов. Кроме того, титановые сплавы обладают стойкостью к воздействию высоких температур, что способствует их использованию в качестве сырья для изготовления деталей реактивных двигателей в авиа- и ракетостроении.

Титановые сплавы широко использовались в пилотируемых ракетных комплексах «Восток» и «Союз», беспилотных «Луна», «Марс», «Венера», а также в более поздних космических системах - «Энергия» и орбитальном корабле «Буран».

Основными объектами применения титана являются твердотопливные и жидкостные ракетные двигатели, обшивки, корпуса пороховых двигателей, трубчатые конструкции стыковых отсеков, агрегаты различного назначения, в частности газовые баллоны высокого давления, детали крепления и др.
Основными требованиями, предъявляемыми к титановым сплавам в этих конструкциях, являются высокая удельная прочность, а в некоторых случаях - низкая хладноломкость, высокая упругость паров в глубоком вакууме и др. В ракетостроении используется практически вся номенклатура конструкционных титановых сплавов.

Титан используют для изготовления баллонов, в которых длительное время под давлением могут находиться различные газы. Например, в американских ракетах типа "Атлас" сферические резервуары для хранения сжатых газов сделаны из титана. Из титановых сплавов изготавливают и баки для окислителя ракетного топлива - жидкого кислорода.
Удивительное свойство титановых сплавов с никелем - способность "запоминать" свою форму. Проволока из такого материала может быть использована для изготовления радиоантенны или каркаса солнечной батареи космического корабля. На холоду это изделие можно сжать в небольшой шар. А при нагревании материал "вспоминает" свою первоначальную форму и разворачивается в то изделие, которое было изготовленно вначале.

  1. Полимерные композиционные материалы в ракетостроении

Современная ракетно-космическая техника немыслима без полимерных композиционных материалов. При разработке средств исследования космического пространства требуются новые материалы, которые должны выдерживать нагрузки космических полетов (высокие температуры и давление, вибрационные нагрузки на этапе выведения, низкие температуры космического пространства, глубокий вакуум, радиационное воздействие, воздействие микрочастиц и т. д.), имея при этом достаточно низкую массу. Многие из таких материалов легче и прочнее наиболее подходящих по своим физическим свойствам металлических (алюминиевых и титановых) сплавов. Применение композиционных материалов позволяет снизить вес изделия (ракеты, космического корабля) на 10…50% в зависимости от типа конструкции и, соответственно, сократить расход топлива, повысив при этом надежность.

Снижение веса является первоочередной задачей проектирования космического летательного аппарата. Многие достижения в области создания тонкостенных оболочек обязаны своим происхождением этому требованию. Типичными примерами такой конструкции являются жидкостнаяракета-носитель «Атлас» и конструкция твердотопливной ракеты. Для «Атласа» была создана специальная монококовая оболочка с наддувом. Ракета с двигателем на твердом топливе получается посредством наматывания на оправку, имеющую форму твердотопливного заряда, стеклянной нити и пропитки намотанного слоя специальной смолой, которая отверждается после вулканизации.

При такой технологии получается сразу и несущая оболочка летательного аппарата, и ракетный двигатель с соплом.

При использовании современных композитных материалов были спроектированы возвращаемые космические аппараты с оболочкой конической формы, покрываемой слоем теплозащитного материала, который, испаряясь при высоких температурах, охлаждает конструкцию.

Еще один яркий пример использования композитных материалов - орбитальный космический корабль «Шаттл», способный летать в атмосфере Земли с гиперзвуковыми скоростями (более 5 Мах или 6000 км/ч). Крылья аппарата имеют многолонжеронный каркас; усиленный монокок кабины экипажа, как и крылья, изготовлен из алюминиевого сплава. Двери грузового отсека выполнены из графито-эпоксидного композиционного материала. Теплозащиту аппарата обеспечивают несколько тысяч легких керамических плиток, которыми покрывают части поверхности, подверженные воздействию больших тепловых потоков.

Для космической станции «Альфа», созданной в соответствии с российско-американскойпрограммой, многие элементы конструкции изготавливались из композиционных материалов: высокопрочные штанги ферм, панели солнечных батарей, сосуды давления, «сухие» отсеки, рефлекторы и т. п.

В ракетно-космической технике успешно применяются легкие сосуды и емкости, изготовленные из полимерных композиционных материалов и работающие под давлением. Созданы и эксплуатируются топливные баки, шары-баллоны, корпусы ракетных двигателей, аккумуляторы давления, дыхательные баллоны для летчиков и космонавтов.

В настоящее время широко используются в авиации и ракетостроении углепластики. Углеродные волокна и композиционные материалы из них имеют глубокий черный цвет и хорошо проводят электричество, что обеспечивает специальные свойства. Из углепластика делают носовые обтекатели ракет, детали скоростных самолетов, подвергающиеся максимальным аэродинамическим нагрузкам, сопла ракетных двигателей и прочее. Кроме того, так как графит - это твердая смазка, из углепластика делают тормозные колодки и диски для скоростных самолетов, космических кораблей многоразового действия «Шаттл». Зеркала антенных конструкций из углепластика найдут широкое применение для решения задач связи через спутники. Их применение при массе до 15 кг обеспечит разрушающую нагрузку 900 кгс при сроке службы не менее 20 лет.

  1. Горючие металлы

Чтобы преодолеть силы земного тяготения и вырваться в космические просторы, необходимо затратить много энергии. Ракета, которая вывела на орбиту корабль-спутник с первым в мире космонавтом Юрием Гагариным, имела шесть двигателей общей мощностью 20 миллионов лошадиных сил!
Естественно, что выбор ракетного топлива представляет собой проблему исключительной важности. Пока наиболее эффективным горючим считается керосин , окисляемый жидким кислородом. Теплотворность этого топлива составляет 9600 кДж/кг.

Хорошие перспективы может иметь применение металлического горючего. Теорию и методику использования металлов в качестве топлива для ракетных двигателей разработали советские ученые Юрий Васильевич Кондратюк (настоящие имя и фамилия - Александр Игнатьевич Шаргей) (1897-1942) и Фридрих Артурович Цандер (1887-1933) - ученые-изобретатели, пионеры отечественной ракетной техники.
Одним из наиболее подходящих для этой цели металлов является литий . При сгорании 1 килограмма этого металла выделяется почти 43000 кДж! Большей теплотворностью может похвастать лишь бериллий. В США опубликованы патенты на твердое ракетное топливо, содержащее 51- 68% металлического лития.

Любопытно, что в процессе работы ракетных двигателей литий выступает против... лития. Являясь компонентом горючего, он позволяет развивать колоссальные температуры, а обладающие высокой термостойкостью и жароупорностью литиевые керамические материалы, используемые как покрытия сопел и камер сгорания, предохраняют их от разрушительного действия горючего.

При сгорании алюминия в кислороде или фторе тоже отмечается высокое тепловыделение. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полета 36 т алюминиевого порошка!

  1. Космический цех полупроводников

Важнейшая область применения редкого металла индия - производство полупроводников. Индий высокой чистоты необходим для изготовления германиевых выпрямителей и усилителей: он выступает при этом в роли примеси, обеспечивающей дырочную проводимость в германии. Кстати, сам индий, используемый для этой цели, практически не содержит примесей: выражаясь языком химиков, его чистота - "шесть девяток", т. е. 99,9999%!
Соединения индия с серой, селеном, сурьмой, фосфором и сами являются полупроводниками. Их применяют для изготовления термоэлементов и других приборов. Соединение индия с сурьмой, которое технологи называют "антимонид индия", служит основой
инфракрасных детекторов , способных "видеть" в темноте нагретые предметы. Индий оказался одним из немногих химических элементов, "командированных" в космос, чтобы вписать новые страницы в технологию неорганических материалов.

В 1975 году, незадолго до начала совместного советско-американского космического полета по программе "Союз"- "Аполлон", командиры экипажей Алексей Архипович Леонов и Томас Стаффорд в беседе с корреспондентом ТАСС высказали свое мнение о значении предстоящих экспериментов на орбите.

В частности, они затронули вопрос о технологических опытах по плавке металлов и выращиванию кристаллов различных веществ. " Предстоит выяснить возможность использования невесомости и вакуума для получения новых материалов - металлических и полупроводниковых , - сказал А. Леонов. По мнению советских и американских ученых, в космосе можно сплавлять компоненты, не смешиваемые на Земле, создавать жаропрочные материалы..."

" Наши астронавты , - добавил Т. Стаффорд, - на борту орбитальной станции "Скайлэб" проводили опыты по выращиванию кристаллов антимонида индия. Удалось получить кристалл самый чистый и самый прочный из всех, когда-либо искусственно полученных на Земле ".

А в 1978-1980 годах на борту советской орбитальной научной станции "Салют-6" были проведены новые технологические эксперименты, в которых "участвовали" индий и его соединения.

Заключение

Таким образом, без усилий многочисленных ученых-химиков, технологов, инженеров-химиков не были бы созданы удивительные конструкционные материалы, которые позволяют космическим кораблям преодолеть земное притяжение, сверхмощное горючее, помогающее двигателям развить необходимую мощность, точнейшие приборы, инструменты и устройства, которые обеспечивают работу космических орбитальных станций.

Можно привести еще множество других примеров того, как используются в космической отрасли достижения науки химии, что является бесспорным подтверждением важнейшего значения этой науки в освоении космоса.

  • Титов, Г. На звездных и земных орбитах. - М.: Детская литература, 1987.
  • Шаталов, В. Космос: рабочая площадка/ В. Шаталов, М. Ребров.- М.: Детская литература, 1978.