25.03.2019

Какой из стандартов оптических коннекторов не существует. Разъемы типа LC


На сегодняшний день разработано более 70 типов коннекторов различного назначения для ВОЛС. Наиболее распространенные - симметричные оптические разъемы с конструктивным исполнением штекерного типа. Для соединения таких коннекторов используют специальные оптические адаптеры. Благодаря этим устройствам соединяемые оптические разъемы могут быть как одного, так и нескольких типов.

Описание конструкции оптического коннектора

Штекерные оптические разъемы выглядят следующим образом: оптоволокно фиксируется в специальном прецизионном наконечнике типа "феруле", который вставляется во вставку-центратор. Крепеж разъемов в адаптере может быть как байонетного типа, так и резьбового или замкового. В некоторых видах оборудования требуется подключение дуплексных пар оптоволокна, специально для этого были разработаны оптические разъемы дуплексного типа. Изначально реализация подобных устройств достигалась за счет симметричного пластмассового зажима, содержащего гнезда, в которые вкладывалась пара коннекторов, после чего они фиксировались защелкой. Больше всего для этого подходили разъемы с квадратными корпусами. Однако со временем появилась необходимость разработки оптических разъемов дуплексного типа в едином корпусе.

Очередным этапом развития производства оптоволоконных разъемов стало создание специальных коннекторов ленточного типа в цельном буферном покрытии. Тем не менее сегодня такой вид не пользуется особой популярностью из-за высокой сложности получения качественного стыка, даже с применением сварочного метода. В настоящее время основными потребителями упомянутых разъемов являются Япония и США.

Основные технические характеристики

Главными параметрами оптических коннекторов являются: долговременная стойкость и стабильность ко внешним условиям. На пропускную способность влияет обратное отражение и вносимое затухание. Эти характеристики зависят от поперечного смещения осей, а также угла между ними. А еще от френелевского отражения сигнала на границе разделения двух сред. Максимальным значением потерь, которое вносится разъемом, является оптическое затухание. Эта характеристика оказывает влияние на размер суммарных потерь в данном тракте. Этот параметр напрямую зависит от поперечного отклонения (разъюстировки) сердцевин соединяемых

Следующий важный параметр - это обратное отражение. Главный источник, влияющий на данную характеристику, - это граница разделения двух сред (воздуха и волокна). Эта составляющая может достигать существенных величин. Более того, обратное отражение может быть переменчивым во времени, то есть под влиянием внешних факторов оно в конечном итоге способно нарушить работоспособность всей системы.

Оптический аудиокабель

Сейчас большую популярность в устройстве аудиосистем завоевывают Главным преимуществом таких проводов является отсутствие помех, а значит, сигнал останется чистым и четким, несмотря на длину такого удлинителя. хорошо зарекомендовали себя надежной работой в сложных электромагнитных условиях, там, где медные провода были не в состоянии справиться с помехами. В компьютерной технике особо популярен кабель SPDIF (Sony-Philips Digital Interface) - это интерфейс для передачи аудиосигналов в цифровом виде. Он передает между устройствами без потери качества, которая неизбежно возникает при использовании аналогового метода.

ИЦ "Телеком-Сервис" предлагает услуги по проектированию, монтажу и сервисной поддержке корпоративных коммуникаций, построенных на основе ВОЛС. Уникальное предложение компании – в комплексном подходе к созданию корпоративных телекоммуникационных и информационных систем. Помимо прокладки оптики, мы эффективно реализуем создание офисных АТС и call-центров (в том числе на базе VOIP), а также создание центров обработки данных и СХД. Внимание: оборудование поставляется только в рамках проекта, розничной продажи нет.

Очевидно, что в идеальной оптической системе передачи информации световой поток должен беспрепятственно проходить трассу от источника до фотоприемника. Оптическое волокно – это ничто иное, как та самая трасса распространения сигнала. Протянуть цельное волокно от источника до приемника не представляется возможным. Технологическая длина волокна обычно не превышает нескольких километров. И если эту проблему еще можно решить сваркой световодов, то обеспечение мобильности локальной оптической подсети достигается только с применением кроссового оборудования. Проблем передачи световой волны от одного отрезка волокна к другому не избежать. Для многократного и простого подключения оптических линков световоды могут оконцовываться оптическими коннекторами. Учитывая, что современные световоды - это микронные технологии, оконцовка волокна оптическими коннекторами представляет собой непростую задачу.

Потери в оптических коннекторах

Опишем проблемы, возникающие при переходе сигнала из одного световода в другой. Потеря мощности или затухание оптической волны возникает при неточной центровке световодов. В этом случае часть лучей просто не переходит в следующий световод, или входит под углом более критического. При неполном физическом контакте волокн образуется воздушный зазор. В связи с чем возникает эффект возвратных потерь. Часть лучей при прохождении прозрачных сред с разной плотностью отражается в обратном направлении. Дотигая резонатора, они усиливаются и вызывают искажения сигналов.

Неидеальная геометрическая форма волокн также вносит вклад в потери мощности. Это может быть и элиптичность световода и нецентричность его сердцевины. Торец самого световода может содержать деформации: сколы и шероховатости, что в свою очередь уменьшает рабочую поверхность соприкосновения волокн.

Наконечники оптических коннекторов

Таким образом необходимо точно и плотно совместить оба световода. Чтобы обеспечить сохранность хрупкого волокна при многократном совмещении, их оконечные отрезки помещают в керамические, пластмассовые или стальные наконечники. Большинство наконечников имеют цилиндрическую форму с диаметром 2,5 мм. Встречаются конические конструкции, а коннекторы LC имеют наконечник диаметром 1,25 мм.
Внутри наконечников существует канал, в который вводится и фиксируется химическим или механическим способом очищенный от оболочки световод. При удалении защитного покрытия могут использоваться как специальные механические инструменты, так и химически активные растворы. Внутри наконечника световод может фиксироваться как по всей длине канала (чаще это методы на основе клея), так и в точке ввода волокна в наконечник (механические методы). Процесс механической фиксации занимает гораздо меньше времени (до нескольких минут) и основан на "придавливании" волокна с помощью полимерных материалов. Но он является менее надежным и недолговечным. Химический способ говорит сам за себя. Чаще всего фиксирующим составом в данной технологии выступают эпоксидные растворы, как наиболее надежные. Однако период полного загустевания такого состава весьма продолжителен –до суток. Поэтому при необходимости более быстрого монтажа коннекторов могут применяться другие компоненты или специальные печи для сушки.

После установки световода в коннектор необходимо отшлифовать торец наконечника. Выступающий излишек волокна удаляется специальными инструментами. Основной принцип заключается в надрезе и обламывании световода, после чего можно приступать к непосредственной полировке поверхности.
Особый интерес вызывает форма торцов наконечников. Их обработка представляет собой целое искусство. Простейший вариант торца - плоская форма. Ей присущи большие возвратные потери, поскольку вероятность возникновения воздушного зазора в окрестности световодов велика. Достаточно неровностей даже в нерабочей части поверхности торца. Поэтому чаще применяются выпуклые торцы (радиус скругления составляет порядка 10-15 мм). При хорошем центрировании плотное соприкосновение световодов гарантируется, а значит более вероятно отсутствие воздушного зазора. Еще более продвинутым рещением является применение скругления торца под углом в несколько градусов. Скругленные торцы меньше зависят от деформаций, образуемых при соединении коннекторов, поэтому подобные наконечники выдерживают большее количество подключений (от 100 до 1000).

Также важен материал наконечника. Подавляющее число коннекторов строятся на основе керамических наконечников, как более стойких.
После оконцовки световодов коннекторами необходимо произвести анализ качества поверхности наконечника. Чаще всего для этого применяются микроскопы. Професcиональные приборы обладают кратностью увеличения в сотни раз и снабжены специальной подсветкой с различных ракурсов. Они могут также иметь интерфейс подключния к дополнительному измерительному оборудованию.

Согласно стандарту TIA/EIA 568A величина возвратных потерь для многомодового волокна в оптических коннекторах не должна превышать -20 Дб, а для одномодового -26 Дб. По величине возвратных потерь коннекторы делятся на классы

Тип Потери Тип Потери
PC менее 30 дБ Ultra PC менее 50 дБ
Super PC менее 40 дБ Angled PC менее 60 дБ

PC представляет собой абривиатуру от англйского Phisical Contact.

Соединение оптических коннекторов

Принципиально соединение двух оптических коннекторов кроссового оборудования строится по следующей схеме:
Платформой для установки коннекторов служит розетка. Входящие в нее коннекторы фиксируются таким образом, чтобы оси их наконечников были отцентрированы, паралельны и плотно прижаты. Подобные розетки обычно устанавливают в патч-панели или вставки монтажных коробов.
Тип коннектора Наконечник Потери (Дб) при 1300 нм
Многомодовый Одномодовый
ST Керамика 0.25 0.3
SC Керамика 0.2 0.25
LC Керамика 0.1 0.1
FC Керамика 0.2 0.6
FDDI Керамика 0.3 0.4

ST-коннектор

Коннекторы различаются не только применяемыми наконечниками, но и типом фиксации конструкции в розетке. Самым распространенным представителем в локальных оптических сетях является ST-тип коннектора (от англ. Straight Tip). Керамический наконечник имеет цилиндрическую форму диаметром 2.5 мм со скругленным торцом. Фиксация производится за счет поворота оправы вокруг оси коннектора, при этом вращения основы коннектора отсутствуют (теоретически) за счет паза в разъеме розетки. Направляющие оправы сцепляясь с упорами ST-розетки при вращении вдавливают конструкцию в гнездо. Пружинный элемент обеспечивает необходимое прижатие.

Слабым местом ST-технологии является вращательное движение оправы при подключении/отключении коннектора. Оно требует большого жизненного пространства для одного линка, что важно в многопортовых кабельных системах. Более того, вращения наконечника отсутствуют только теоретически. Даже минимальные изменения положения последнего влекут рост потерь в оптических соединениях. Наконечник выступает из основы конструкции на 5-7 мм, что ведет к его загрязнению.

SC-коннектор

Слабые стороны ST-коннекторов в настоящее время решают за счет применения SC-технологии (от англ. Subscriber Connector). Сечение корпуса имеет прямоугольную форму. Подключение/отключение коннектора осуществляется поступательным движением по направляющим и фиксируется защелками. Керамический наконечник также имеет цилиндрическую форму диаметром 2.5 мм со скругленным торцом (некоторые модели имеют скос поверхности). Наконечник почти полностью покрывается корпусом и потому менее подвержен загрязнению нежели в ST-конструкции. Отсутствие вращательных движений обуславливает более осторожное прижатие наконечников.

В некторых случаях SC-коннекторы применяются в дуплексном варианте. На конструкции могут быть предусмотрены фиксаторы для спаривания коннекторов, или применяться специальные скобы для группировки корпусов. Коннекторы с одномодовым волокном обычно имеют голубой цвет, а с многомодовым серый.

LC-коннектор

Коннекторы типа LC – это малогаббаритный вариант SC-коннекторов. Он также имеет прямоугольное сечение корпуса. Конструкция исполняется на пластмассовой основе и снабжена защелкой, подобной защелке, применяющейся в модульных коннекторах медных кабельных систем. Вследствие этого и подключение коннектора производится схожим образом. Наконечник изготавливается из керамики и имеет диаметр 1.25 мм.

Встречаются как многомодовые, так и одномодовые варианты коннекторов. Ниша этих изделий - многопортовые оптические системы.

FC-коннектор

В одномодовых системах встречается еще одна разновидность коннекторов – FC. Они характеризуются отличными геометрическими характеристиками и высокой защитой наконечника.

FDDI-коннектор

Для подключения дуплексного кабеля могут использоваться не только спаренные SC-коннекторы. Часто в этих целях применяют FDDI-коннекторы. Конструкция исполняется из пластмассы и содержит два керамических наконечника. Для исключения неправильного подключения линка коннектор имеет несимметричный профиль.
Технология FDDI предусматривает четыре типа используемых портов: A, B, S и M. Проблема идентификации соответствующих линков решается за счет снабжения коннекторов специальными вставками, которые могут различаться по цветовой гамме или содержать буквенные индексы.
В основном данный тип используется для подключения к оптическим сетям оконечного оборудования.

MT-RJ-коннекторы

Гарантированные параметры кабельных сборок:

  • Прямые потери <0.5 дБ (типичное значение - 0.25 дБ для ММ)
Области применения:
  • Проводка в зданиях (горизонтальная и backbone)
  • Телекоммуникационные сети
Примечание: сборка MT-RJ шнуров осуществляется в соответствии с процедурами MFO 86001-0112.

Особенности:

  • Размер и конструкция защелки аналогичны RJ-45
  • Дуплексный ферул
  • Низкая стоимость
  • Высокая плотность портов
  • Соответствие стандартам ISO/IEC 11801 и TIA/EIA 568A
  • Низкие прямые потери:

< 0.22 дБ для ММ
< 0.19 дБ для ОМ

Разработка коннектора MT-RJ преследовала решение следующих задач: малый размер, низкая стоимость и простота установки. Использование коннектора MT-RJ увеличивает плотность портов в два раза по сравнению со стандартными коннекторами и делает его идеальным для использования в приложениях типа fiber-to-the-desk. Дизайн коннектора соответствует требованиям TIA.

В коннекторе MT-RJ используется улучшенная версия индустриального стандарта для коннекторов типа RJ-45. Именно малый размер и удобство защелки аналогичной RJ-45 определяют преимущества данного коннектора при использовании в горизонтальной проводке до рабочего места.

Особенностью системы MT-RJ от Molex является использование различных PN для коннекторов модификации «папа» (с направляющими штырьками, выступающими из ферула) и «мама» (с дырочками под штырьки). Имеются две модификации адаптера, одна из которых устанавливается в гнездо для симплексного SC адаптера.

Качество и характеристики

Материалы предоставлены компаний AESP, известным производителем сетевого и коммуникационного оборудования, разработчиком кабельной системы SygnaMax.

Оптические разъемы, которые иногда называют разъемными соединителями, предназначены для обеспечения разъемного подключения соединительных и оконечных шнуров к коммутационному оборудованию в кроссовых, информационным розеткам рабочих мест и к сетевому оборудованию.

В перечень основных функций оптоволоконного разъема входит:

  • обеспечение ввода волокна в точку сращивания с заданным радиусом изгиба;
  • защита волокна от внешних механических и климатических воздействий;
  • фиксация волокна в центрирующей системе.

Оптические разъемы должны отвечать следующим основным техническим требованиям:

  • внесение минимального затухания в сочетании с получением высокого затухания обратного рассеяния;
  • обеспечение долговременной стабильности и гарантия параметров;
  • высокая механическая прочность при минимальных габаритах и массе;
  • простота установки на кабель;
  • простота процесса подключения и отключения;
  • наличие у наконечников выпуклых торцевых поверхностей;
  • предварительная специальная обработка наконечников.

Требования стандартов к оптическим разъемам содержатся в обоих основных нормативных документах (TIA/EIA 568С и ISO/IEC 11801-2008). Стандарты нормируют только самые общие положения и задают:

  • тип разъемов, допустимых для применения в оптоволоконных подсистемах СКС;
  • основные передаточные параметры разъемов различных типов;
  • требования к долговечности разъемов;
  • правила подключения оптических разъемов.

Требования стандартов к предельным значениям затухания, потерь на отражение и долговечности оптических разъемов СКС будут рассмотрены далее.

Разъем должен снабжаться символьной маркировкой в виде букв А и В. Вилку с маркировкой А всегда необходимо подключать к розетке с такой же маркировкой, и наоборот. Двойная вилка SC разъема по стандарту должна иметь разную маркировку своих половин, причем, если смотреть на нее со стороны наконечников так, чтобы ключи были сверху, то левая вилка всегда маркирована буквой А, а правая - буквой В. Маркировка проходной розетки имеет одну особенность. По разным своим сторонам она имеет разную маркировку. Смысл маркировки вилок и розеток разъема SC заключается в том, что она позволяет определить направление «движения» оптоволоконного сигнала. Вилка с маркировкой А всегда является источником, а розетка с такой же маркировкой - приемником, и наоборот. Аналогично на сетевом оборудовании розетка с маркировкой А является входом оптоволоконного приемника, а с маркировкой В выходом оптоволоконного передатчика.

В настоящее время большинство разъемов рассчитано на соединение двух оптоволокон. Существуют конструкции, получившие название групповых (или многоканальных) разъемов, которые обеспечивают одновременное сращивание двух или более пар оптоволокон. При этом доля таких конструкций в общем объеме растет очень быстрыми темпами. Для применения в специальных условиях эксплуатации (повышенная влажность, пары агрессивных материалов и т. д.) используются герметичные разъемы. Известны и конструкции так называемых гибридных разъемов, позволяющих одновременно сращивать как оптические волокна, так и электрические проводники.

Оптические разъемы линзового типа

Существуют линзовые и контактные варианты исполнения оптических разъемов. Разъемы линзового типа были широко распространены на ранних этапах развития техники волоконно-оптической связи и предполагают использование линз или их аналогов. С помощью данного элемента свет, выходящий из передающего световода, сначала преобразуется в параллельный пучок большого диаметра, а затем с помощью второго элемента фокусируется на сердцевину принимающего волокна. Основным преимуществом данного варианта является меньшая чувствительность к осевым и боковым смещениям сращиваемых волокон. Разъемы контактного типа предполагают соединение световодов встык, причем дополнительно контролируется параллельность их осей друг другу и минимально возможное расстояние между торцами. За счет такой конструкции соединители контактного типа позволяют получить существенно лучшие массогабаритные показатели и принципиально меньшее затухание сигнала (отсутствуют потери в линзах и на френелевское отражение). По этой причине подавляющее большинство современных конструкций разъемов реализуют контактную схему соединения.

Оптические разъемы контактного типа

Основой большинства конструкций разъемов контактного типа является штекерный наконечник. Этот наконечник вставляется в юстирующий элемент в виде втулки, а сам разъем содержит два основных компонента: вилку (коннектор) и розетку (каплер).

Основная масса разъемов, выпускаемых промышленностью, реализована по так называемой симметричной схеме, то есть оба сращиваемых световода армируются одинаковыми вилками, которые затем с двух сторон вставляются в соединительную розетку, снабженным специальным центратором. Существует также достаточно немногочисленная группа оптоволоконных разъемов, которые содержат всего два элемента: вилку и розетку. Такие соединители получили название несимметричных.

Для фиксации вилки, установленной в розетку, может использоваться байонетный элемент (так называемый разъем типа ST), защелка, причем данный элемент может быть выполнен как внутренним (разъем типа SC), так и внешним рычажного типа (разъемы LC, Е-2000), а также многогранная или круглая с накатанной поверхностью накидная гайка (разъемы типов FC и SMA). Аналогичным образом производится подключение к оптоволоконному кабелю оконечного активного оборудования, интерфейс которого снабжается ответной частью розетки оптоволоконного разъема.

Разъемы изготавливаются как в многомодовом, так и в одномодовом варианте, причем последний конструктивно оформляется аналогично многомодовому разъему и отличается в основном более жесткими допусками на геометрические размеры наконечника вилки и центрирующих элементов розетки, позволяющими удержать потери при сращивании одномодовых световодов в приемлемых пределах. Так, например, стандартный диаметр отверстия наконечника вилки для армирования одномодовых световодов составляет 126+1/-0 мкм, тогда как в наконечниках вилок для многомодовых волокон значение этого параметра составляет 127+2/-0 мкм.

Многие многомодовые разъемы имеют вилки нескольких разновидностей, рассчитанные для установки на волокно с различным диаметром оболочки (125, 140, 280 мкм и т. д.). Конструктивно они отличаются друг от друга только диаметром отверстия наконечника.

Рабочий температурный диапазон большинства конструкций оптоволоконных разъемов составляет от –40 до +85°С, то есть, совпадает с рабочим температурным диапазоном большинства конструкций кабелей для внешней прокладки.

Принцип работы ОВ разъема достаточно прост: два оптоволоконных коннектора совмещаются вместе внутри специальной втулки по принципу торцевой стыковки. Поэтому, чтобы на практике реализовать принцип соединения торцов ОВ встык, оптоволокно вклеивается с помощью клея по центру в цилиндрический штифт (феррул) с очень малым внутренним диаметром, равным 126-127 мкм для одномодового ОВ и 127-128 мкм для многомодового ОВ с диаметром внешней оболочки 125 мкм. В качестве клея в классической технологии чаще всего используют эпоксидный клей (смолу), которая выполняет одновременно две важные функции. Она защищает очищенное от уретан акрилатной оболочки оптоволокно в коннекторе от воздействия температуры и влажности окружающей среды и придает требуемую гибкость оптоволоконному световоду в процессе полировки. После этого торец феррула полируется до достижения чистой и тонко отполированной поверхности без царапин.

Для получения ОВ разъемного соединения, два ОВ коннектора соединяются предварительно отполированными торцами встык в центрирующей гильзе. Существует множество типов ОВ коннекторов, тем не менее стандартным диаметром штифта считается величина 2,5 мм. Применяемые феррулы часто отличаются друг от друга. Так, некоторые производители делают их из металла, керамики или даже пластмассы. Экспериментально установлено, что характеристики у штифтов из керамики с оксидом циркония значительно лучше, чем у металлических штифтов, изготовленных из никель-серебряного сплава или карбида вольфрама. Поэтому, выбирая ОВ коннекторную сборку, следует особое внимание обратить на то из чего изготовлен ферул или штифт ОВ коннектора. Применение штифтов для ОВ коннекторов, выполненных из пластмассы, даже особо прочного и стойкого типа, даст несомненный выигрыш в цене, но очевидный проигрыш в технических и эксплуатационных характеристиках.

Основные параметры некоторых типов оптоволоконных разъемов приводятся в табл. 1.

Таблица 1. Основные параметры оптических разъемов

Тип разъема

Материал наконечника

Фиксатор

Среднее затухание, дБ

на длине волны 1300 нм

многомодовый

одномодовый

Керамика

Накидная гайка

Керамика

Керамика

Накидная гайка

Керамика

Байонетный

Мельхиор

Основные типы оптических разъемов СКС

1. Разъемы типа SC

Разъем SC (рис.4) (от англ, subscriber connector - «абонентский разъем», иногда используется такая неофициальная расшифровка этого сокращения, как Stick-and-Click - «вставь и защелкни») был разработан в 1986 году японской телекоммуникационной корпорацией NTT для использования в абонентских устройствах различного назначения. В настоящее время нормирован международным стандартом IЕС-874-13. Действующими редакциями стандартов он определен как основной тип разъема для применения в СКС. Может быть выполнен в одинарном и двойном (дуплексном) вариантах. Основная идея, заложенная в его конструкцию, заключается в создании устройства с пластмассовым корпусом, хорошо защищающим наконечник и обеспечивающим плавное подключение и отключение линейным движением. Подавляющее большинство вилок разъемов SC снабжается наконечниками из керамики, имеются также единичные образцы этих изделий с наконечниками, изготовляемыми из нержавеющей стали. Наконечник разъема SC утоплен в корпус вилки, что предохраняет его от загрязнений. Линейное движение при подключении и отключении делает этот разъем особенно удобным для применения в 19-дюймовых полках, так как позволяет увеличить плотность портов за счет сближения розеток. Защелка открывается только при вытягивании за корпус, что увеличивает эксплуатационную надежность.

Рис. 4. Разъем SC

Разъемы SC обеспечивают большую стабильность параметров (выдерживают не менее 500 подключений и отключений), чему в немалой степени способствует отсутствие проворачиваний наконечников друг относительно друга при включении и отключении. Как видно из табл.1, этот разъем по величине вносимого затухания является одним из лучших. На верхней стороне корпуса вилки имеется ключ в виде выступа, который препятствует ее подключению в розетку в неправильном положении.

Для получения дуплексного (двойного) разъема из симплексных (одинарных) используют два способа. Первый из них основан на том, что на корпусе вилок предусмотрены фиксаторы, взаимодействующих между собой в собранном состоянии. Во втором случае применяется внешний фиксатор. Он может быть выполнен в виде состоящей из двух симметричных половин обоймы с гнездами для корпусов вилок или же представлять собой Н-образную деталь, в боковые пазы которой вставляются вилки. По последней схеме реализован, например, фиксатор типа 2А1 компании Lucent Technologies, снабженный штатной символьной маркировкой в виде букв А и В. Расстояние между осями наконечников вилок в двойном разъеме составляет 12,7 мм. Большой пластмассовый корпус вилки и розетки разъема SC позволяет дополнительно к символьной применять также эффективную цветовую маркировку. Одномодовый и многомодовый варианты разъема SC согласно стандарту TIA/EIA-568В имеют, соответственно, голубой и серый (или бежевый) цвет корпуса. Выпускается также одномодовый разъем SC с корпусом зеленого цвета и со скошенной торцевой частью наконечника для уменьшения обратного отражения. Широко распространены также отдельные образцы разъемов SC с корпусом вилок и розеток нестандартной окраски

2. Разъемы типа ST

Оптический разъем типа ST (рис.5) (от англ. straight tip connector, то есть «разъем с прямой установкой»; иногда используется неофициальная расшифровка этого сокращения - Stick-and-Twist -«вставь и поверни») был разработан лабораторией Bell компании AT&T (Lucent Technologies) в 1985 году для замены биконического разъема.

Рис. 5. Разъем ST

До появления разъема SC он был наиболее распространенным в оптических подсистемах СКС и локальных сетях. Конструкция разъема в настоящее время определяется международным стандартом IEC 874-10, который предписывает наличие керамического наконечника диаметром 2,5 мм с выпуклой торцевой поверхностью. Фиксация вилки на розетке выполняется подпружиненным байонетным элементом, поворачивающимся на 1/4 оборота. Поэтому разъем ST иногда называют разъемом типа ВFОС (от англ. bayonet fiber optic connector).

Имеется несколько вариантов конструкций ST-разъемов, отличающихся в основном формой и материалом байонетного фиксатора, а также принципом крепления корпуса вилки к буферным оболочкам и защитным покрытиям световода.

Компания Lucent Technologies разработала три варианта вилок такого разъема: ST, ST11 и ST11+, которые полностью совместимы друг с другом по посадочным местам в розетке и имеют незначительные конструктивные отличия, улучшающие их эксплуатационные свойства по мере перехода к более совершенной модели. Так, в частности, гайка байонетного фиксатора вилки ST имеет открытый в осевом направлении шлиц, тогда как у обоих более поздних вариантов этот шлиц закрыт перемычкой. Важной особенностью вилок Lucent Technologies является отсутствие необходимости применения кримпирующего (обжимного) инструмента при армировании ими волокна в буферном покрытии диаметром 900 мкм.

Металлическое исполнение корпуса вилки и розетки разъема ST обеспечивает высокую механическую прочность, однако существенно затрудняет его кодировку и идентификацию. Иногда на корпусах розеток выдавливаются буквы SM и ММ для одномодового и многомодового вариантов соответственно. Некоторые компании предлагают вилки ST с хвостовиками из пластмассы разного цвета, также достаточно часто применяются на практике различные кольца, гильзы и другие аналогичные изделия, не являющиеся штатными маркирующими элементами.

Конструкция разъема ST не обеспечивает возможность формирования дуплексной вилки. Соответственно, его розетка выпускается основной массой производителей в одиночном варианте. Только Nexans Cabling Solutions предлагает сдвоенные ST-розетки в одном корпусе.

К преимуществам ST-разъема относится низкая стоимость в сочетании с простотой монтажа и подключения, а недостатки можно выделить следующие:

  • сильно выступающий наконечник увеличивает вероятность его загрязнения;
  • отсутствие двойного варианта повышает трудоемкость подключения двойных шнуров и вероятность ошибки при коммутации;
  • отсутствие цветовой или другой заводской маркировки затрудняет их идентификацию;
  • поворачивающее усилие при подключении вызывает трение наконечников вилок, что ведет к повреждению их полировки и, в конечном итоге, к увеличению вносимого затухания после многократных подключений и отключений;
  • принцип фиксации на основе байонетной гайки не обеспечивает необходимой для некоторых приложений стабильности параметров при вибрационных воздействиях.

Для частичной защиты наконечников от трения при подключении в конструкциях вилок ST разъемов предусмотрен специальный выступ, вводимый в паз розетки.

Другие типы оптических разъемов

1. Разъемы типа FC

Разъемы типа FC (рис.6) определены международным стандартом IЕС 874-7 и ориентированы в основном на применение в одномодовой технике. Наибольшее распространение они получили в различного назначения телекоммуникационных системах для сетей связи общего пользования. В целях обеспечения низкого уровня затухания и минимума обратного отражения наконечник разъема изготавливают с округлением на конце (при этом задаются очень жесткие допуски на геометрические размеры). Самый первый вариант вилки разъема имел наконечник с плоским торцом, что не позволяло получить хорошие эксплуатационные параметры. После перехода на наконечник со скругленным торцом, обеспечивающим физический контакт сращиваемых световодов, разъем получил название FC-PC (PC - Physical Contact), позволяющее отличать его от более ранних конструкций. В настоящее время разъемы FC с плоским наконечником не производятся, поэтому названия FC и FC-PC являются эквивалентными.

Рис. 6. Разъем FC

Конструкция разъема обеспечивает надежную защиту керамического наконечника от загрязнений, а применение для фиксации накидной гайки дает большую герметичность зоны соединения и надежность соединения при воздействии вибраций. Главным недостатком конструкции наряду с большими габаритами считается неудобство работы из-за необходимости выполнения нескольких оборотов крепежной гайки во время включения/отключения.

Элемент защиты наконечника разъема от проворачивания выполнен в виде цилиндра диаметром 2 мм. Некоторые компании дополнительно используют другие значения данного параметра (в частности, Molex выпускает вилки с диаметром этого элемента 2 мм) для решения задачи механической блокировки от неправильного подключения.

Оптические разъемы данного типа выпускаются, в основном, для телекоммуникационного оборудования, работающего с технологиями передачи SDH , ATM и аналогичными.

Розетка разъема FC выпускается в двух вариантах: типа SF с квадратным фланцем и креплением двумя винтами М2 и типа RF с круглым фланцем и креплением под гайку.

Оптические разъемы малых форм-факторов (SFF). Конструкции оптических разъемов с наконечниками уменьшенного диаметра.

1. Разъемы типа LC

Наиболее известным представителем первого направления совершенствования разъемов с увеличенной плотностью установки по состоянию на 2005-2006 г.г. является разъем типа LC (рис.7) (от англ, link control, также очень распространена расшифровка этой аббревиатуры как Lucent Connector), который был разработан американской компанией Lucent Technologies в 1997 году. (по другим данным, в 1996 году). Разъем может выпускаться как в одномодовом, так и в многомодовом вариантах. Его конструкция основана на применении керамического наконечника с уменьшенным до 1,25 мм диаметром и пластмассового корпуса с внешней защелкой рычажного типа для фиксации в гнезде соединительной розетки. Разъем допускает как симплексное, так и дуплексное использование.

Рис. 7. Разъем LC

Разработчики этого типа оптоволоконного соединителя в соответствии с действующими и перспективными редакциями стандартов СКС гарантируют до 500 циклов включения-отключения без ухудшения характеристик потерь. Этому, наряду с использованием керамического наконечника, способствует принцип линейного включения вилки в гнездо (push-pull).

Для установки вилки LC применяются стандартные процедуры заклейки на эпоксидной смоле. Конструкция вилки допускает ее монтаж как на волокне в буферном покрытии 0,9 мм, так и на соединительных шнурах со шлангом 2,4 мм. При этом монтаж на 900 мкм волокно может производиться в полевых условиях, тогда как наклейка на кабель в шланге 2,4 мм в процессе изготовления соединительных шнуров из-за малых габаритов выполняется только на производстве.

Основные технические характеристики разъемов типа LC приводятся в табл. 2.

Таблица 2. Основные технические характеристики разъемов с наконечниками уменьшенного диаметра

Таблица 2. Основные технические характеристики разъемов с наконечниками уменьшенного диаметра

Параметр/Разъем

Средние потери, дБ

Среднеквадратичное отклонение потерь, дБ

Коэффициент отражения, дБ

Изменение потерь после 500 циклов соединения-разъединения, дБ, не более

Изменение потерь в диапазоне температур -40…+75 °С, дБ, не более

Материал наконечника

Керамика

2. Разъемы типа MU

Вторым представителем конструкции рассматриваемой разновидности является разъем MU (рис.8) японской телекоммуникационной корпорации NTT. Это изделие можно рассматривать как малогабаритный вариант разъема SC, что подчеркивается в некоторых публикациях обозначением «mini-SC». Аналогично своему предшественнику разъем данного типа содержит корпус с внутренней защелкой (принцип push-pull), а за счет меньшего диаметра наконечника и миниатюризации остальных элементов конструкции обладает примерно вдвое меньшими габаритами.


Рис. 6. Разъем MU

На коммерческом рынке оборудования можно встретить как симплексный, так и дуплексный варианты разъема рассматриваемого типа. Дуплексный вариант разъема MU известен в двух разновидностях. Первая из них реализована на основе общей неразборной обоймы для двух вилок с расстоянием между центрами наконечников 4,5 мм. Величина этого параметра у второй, разборной разновидности - 6,5 мм.

3. Разъемы типа F-3000

Разъем типа F-3000 (рис.7) представляет собой усовершенствованную версию описываемого ниже разъема типа Е-2000. Он сохраняет основные конструктивные особенности прототипа и отличается от него применением керамического наконечника внешним диаметром 1,25 мм и металлической защитной крышки вместо пластмассовой. Последнее нововведение гарантирует защиту глаз обслуживающего персонала в случае работы с аппаратурой, оснащенной мощными лазерными излучателями. По утверждениям разработчиков, вилка разъема F-3000 может свободно вставляться в розетку разъема LC.

Рис. 7. Разъем F-3000

Оптические разъемы малых форм-факторов (SFF). Малогабаритные разъемы с наконечниками диаметром 2,5 мм

Подход второго типа основан на сохранении в разъеме основного элемента применяемых ранее конструкций - наконечника диаметром 2,5 мм. Улучшение массогабаритных показателей обеспечивается за счет более плотной компоновки и, возможно, миниатюризации отдельных элементов корпуса. Наиболее известными разработками в этой области являются разъемы типов Е-2000, SC-Compact и FJ.

1. Разъем типа E-2000

Разъем типа Е-2000 (рис.8) (Европа, 2000 год) создан компанией Diamond и получил распространение в некоторых европейских странах (Швейцария, Германия и т. д.). Известен в двух основных вариантах конструктивного исполнения, полностью соответствующих друг другу по посадочным местам. Согласно первому из них, продвигаемому разработчиком - компанией Diamond, наконечник выполнен по композитной схеме в виде мельхиорового цилиндра, на который вплотную надета центрирующая керамическая гильза. В разъеме Е-2000 фирмы Huber+Suhner наконечник выполнен по классической технологии в виде керамического цилиндра. Фиксация вилки в розетке выполняется при помощи внешней защелки рычажного типа.


Рис. 8. Разъем E-2000

Разъем может эксплуатироваться как в симплексном, так и в дуплексном исполнении. Дуплексный разъем известен в обычном (duplex, расстояние между осями наконечников 12,7 мм), компактном (compact duplex, расстояние между осями 6,4 мм) и вертикальном (low profile duplex, вилки расположены друг над другом с разворотом на 180°) вариантах. Для получения одной дуплексной вилки из двух одиночных используется специальная фиксирующая защелка, дуплексная розетка совместима по своим посадочным местам со стандартной розеткой модульного разъема только для компактного варианта. От более ранних конструкций разъем типа Е-2000 отличается возможностью применения эффективной цветовой кодировки (в настоящее время стандарт включает 8 цветов) и механической блокировки при использовании сменной рамки розетки, а также наличием интегрированной в конструкцию защитной крышки. Последняя при установке в розетку открывается автоматически и надежно защищает наконечник от загрязнения.

2. Разъем типа SC-Compact

Разъем типа SC-Compact швейцарской компании Reichle & De Massari представляет собой удачный пример глубокой модернизации хорошо отработанного в серийном производстве изделия с целью получения новых свойств. Прототипом разъема является хорошо известный SC, однако за счет устранения внешних элементов крепления и разработки новой фиксирующей оправки инженеры компании Reichle & De Massari сумели уменьшить расстояние между осями наконечников с обычных 12,7 мм до 7,5 мм и вписать, тем самым, розетку в посадочные места розетки модульного разъема. Отметим, что так называемый вертикальный вариант дуплексной вилки SC-разъема японской компании Honda Tsushin Kogyo имеет расстояние между осями наконечников 8,5 мм. Розетка этой вилки близка по посадочным местам к розетке модульного разъема, однако, не является по отношению к ней взаимозаменяемой.

3. Разъем типа High Density SC Connector

Еще одним представителем разъемов, в которых использована аналогичная идея, является изделие High Density SC Connector компании ЗМ. Этот разъем отличается от разъема стандартной плотности тем, что имеет габаритные размеры вилки, уменьшенные в поперечном сечении до 6,0x7,2 мм, против 7,4x9,0 мм у прототипа. Наибольшее преимущество данная разработка обеспечивает в случае использования для соединения счетверенной розетки. При таком варианте исполнения расстояние между центрами розеток составляет примерно 7 мм, то есть данный разъем обеспечивает плотность портов, примерно равную плотности портов электрических аналогов, однако, без поддержки свойства обратной совместимости.

4. Разъем типа FJ

Компанией Panduit еще в 1996 году предложен разъем типа FJ (fibre jack) или Opti-Jack (рис.9). Это изделие предназначено для использования в структурированной кабельной системе PAN-NET и известно только в дуплексном исполнении. Основой разъема также является керамический наконечник диаметром 2,5 мм, однако, за счет более плотной компоновки и, в частности, уменьшения расстояния между осями наконечников до 6,4 мм (0,25 дюйма) габариты розетки уменьшены до размеров гнезда электрического модульного разъема. Фиксация вилки в розетке выполняется защелкой рычажного типа. Для улучшения условий эксплуатации рычаг защелки закрыт куполообразной крышкой хвостовика. Конструкция позволяет производить полевую сборку, для чего разработана оригинальная клеевая технология с использованием двухкомпонентного анаэробного клея. Очистка торцевых поверхностей наконечников от загрязнений, потребность в которой может возникнуть в процессе текущей эксплуатации, обеспечивается за счет использования разборной конструкции розетки: ее отдельные детали крепятся друг к другу на защелках.

Рис. 9. Разъем FJ (Opti-Jack)

От других конструкций разъем типа FJ отличается тем, что его розетка не является отдельным конструктивным элементом, а всегда объединяется с одной из вилок. Только в 1998 году появилась классическая розетка для разъемов рассматриваемого типа, но она предназначена исключительно для использования в измерительных целях.

Разъем FJ первоначально выпускался только в многомодовом варианте с корпусом бежевого цвета. В 1998 году появился его одномодовый вариант с корпусом голубого цвета.

Оптоволоконные разъемы группового типа

Подход третьего типа представлен достаточно многочисленной группой разработок многоканальных или групповых разъемов. Наиболее совершенные изделия этой группы позволяют сращивать одновременно до 18 световодов, то есть превосходят электрические модульные разъемы по плотности компоновки в девять раз. Достаточно часто эти изделия выполняются как уменьшенный или упрощенный вариант «большого» группового разъема, разработанного для применения в телекоммуникационных приложениях. Общей отличительной чертой, объединяющей все рассмотренные далее конструкции, является использование в них линейного принципа установки в розетку (принцип push-pull) без использования резьбовых или байонетных фиксаторов.

1. Разъемы типа SCDC и SCQC

Разъемы SCDC и SCQC продвигаются консорциумом, в который входят компании Siecor, Siemens и IBM, и отличаются тем, что в них с целью сокращения времени разработки и частичной унификации с уже существующими изделиями использован внешний корпус вилки традиционного симплексного разъема SC. Новым является применение центрирующего элемента, очень похожего на обычный наконечник и имеющего два (SCDC) или четыре (SCQC) канала для фиксации в них сращиваемых световодов.

2. Разъемы типа Mini-MT и MT-RJ

Принцип частичной унификации задействован также в разъемах Mini-MT (сокращение «МТ» означает Mass Termination) разработки компании Siecor и MT-RJ (рис.10) консорциума фирм AMP, Siecor, Hewlett Packard, USConec и Fujikura. В этих изделиях использован одинаковый центрирующий элемент с близкой к прямоугольной в сечении формой, рассчитанный на два или четыре световода. Разница между этими вариантами разъемов состоит в том, что в MT-RJ элемент фиксации вилки в розетке имеет вид, привычный пользователям СКС, и аналогичен защелке рычажного типа вилки электрического модульного разъема. Отметим, что разъем MT-RJ является одним из основных элементов волоконно-оптической кабельной системы Solarum компании AMP.

Рис. 10. Разъем MT-RJ

3. Разъем типа MPO и Mini-MPO

Групповые разъемы типа MPO (Multofiber Push-On) активно используются для подсоединения ленточных оптоволоконных кабелей. Наибольшую долю среди перспективных типов оптоволоконных разъемов для СКС занимает оптический разъем Mini-MPO компании Berg Electronics, который позволяет сращивать до 18 волокон одновременно. Ожидается, что разъемы указанного типа имеют большие перспективы для инсталляции в центрах хранения данных (SAN) где требуется большая плотность соединений. В этой связи следует ожидать в ближайшие годы широкого распространения групповых разъемов MPO для 24- или 48-волоконных кабелей.

Конструкции оптоволоконных разъемов без центрирующего наконечника

Центрирующий наконечник вилки оптоволоконного разъема является дорогой прецизионной деталью (по некоторым оценкам, доля наконечника в конструкции вилки достигает 40% его стоимости), а процесс армирования им световода представляет собой достаточно сложную и продолжительную процедуру. Стремление к устранению этих недостатков привело к появлению двух конструкций, в которых наконечники отсутствуют, а процесс центрирования волокон в процессе их соединения выполняется другими средствами.

Общими отличительными признаками разъемов рассматриваемой группы являются:

  • выступающее на несколько миллиметров из держателя волокно, торец которого сколот и подготовлен к сращиванию в процессе монтажа вилки разъема на специальном технологическом приспособлении;
  • обязательное наличие подпружиненной крышки, которая закрывает волокна во внерабочем состоянии;
  • возможность установки вилки или розетки только с помощью комплекта фирменной технологической оснастки.

1. Разъем типа Optoclip II

Разъем типа Optoclip II (рис. 11) швейцарской компании Huber+Suhner (по другим данным, разработчиком разъема является французская компания Compagnie Deutsch) реализован по наиболее распространенной симметричной схеме и основан на применении одиночной вилки, которая, в случае необходимости, может соединяться с другой вилкой для получения дуплексного варианта.


Рис. 11. Разъем Optoclip II

Предварительное выравнивание волокон при их соединении выполняется с помощью конусообразной направляющей, окончательное выравнивание производится с помощью системы из трех сдвинутых друг относительно друга на 120° шариков, один из которых выполнен подвижным в вертикальном направлении.

2. Разъем типа VF-45

В отличие от этого оптоволоконный разъем VF-45 (рис. 12) (иногда может употребляться название VG-45) компании ЗМ реализован на основе V-образной канавки и рассчитан на армирование одной вилкой сразу двух волокон ленточного кабеля одновременно. Для обеспечения возможности четкого ввода световодов в направляющие канавки и получения физического контакта торцевых поверхностей сращиваемых волокон при установленной вилке фиксация концевого участка световодов в розетке выполнена с разворотом под углом 45°, что дополнительно несколько уменьшает общую длину коннектора. В качестве интересной технической особенности вилки разъема отметим, что защитная крышка при ее установки в розетку в отличие от подавляющего большинства других конструкций сдвигается вбок, а не поднимается вверх.

В разъеме VF-45 достаточно оригинально решается проблема очистки торцевой поверхности сращиваемых волокон, которая является весьма трудной задаче для любого изделия без центрирующего наконечника. Специальное промывочное устройство очищает волокна за счет прокачки через розетку разъема большого количества очищающей жидкости. Для получения необходимого уровня обратного отражения торцевая поверхность волокна скашивается под углом 9° при обработке в скалывателе во время монтажа разъема.

Отметим также, что в этих разъемах по-разному решается проблема цветовой кодировки. В варианте Optoclip II использовано обычное исполнение корпуса из пластика разных цветов, в VF-45 же многомодовое и одномодовое исполнение кодируется применением только защитной дверцы различных цветов.

Перечень рассмотренных типов перспективных оптоволоконных разъемов, применяемых некоторыми производителями, представлен в табл. 3.

Таблица 3. Некоторые типы перспективных оптоволоконных разъемов, поддерживаемых различными производителями СКС

ADC Telecommunication, США

NetConnect (Solarum)

BTR Telecom, Германия

Corning,США IBM, США

Corning Cable Systems

Lucent Technologies, США

Molex Premise Netwoks

Ortronics, США

RiT Technologies, Израиль

Siemon Cabling System

На технических семинарах по ОВ решениям в СКС мне неоднократно приходилось слышать от студентов курсов, что ОВ коннекторы того или иного производителя не справлялись с возложенными на них функциями. Это касалось как механических характеристик ОВ коннекторов, так и характеристик вносимого затухания и потерь отражения.

Следует учесть, что величина вносимого затухания главным образом зависит от следующих основных факторов:

Радиального смещения ОВ,
- торцевого зазора,
- углового смещения ОВ,
- воздушного зазора, образованного из-за чрезмерной полировки торцов по методу РС (phisical contact ).

Современные ОВ коннекторы, применяемые в LAN сетях, имеют типовое затухание около 0,2 дБ и лучше.

Помимо вышеуказанных факторов, дополнительное вносимое затухание в ОВ разъемное соединение могут вносить различные конструкции ОВ коннекторов с большими допусками на их детали. Так, наводнение рынка в последнее время дешевыми ОВ коннекторными сборками с отсутствием марки производителя (noname ) из Юго-Восточной Азии, иногда на практике приводит к полной потере работоспособности ОВ канала. Выбор ОВ решений у прекрасно зарекомендовавших себя и проверенных временем производителей ОВ оборудования, обернется несомненным выигрышем.


Плоские коннекторы (Flat connectors). Коннекторы серии РС. Коннекторы серии РС. Коннекторы серии SРС (Super Physically Contact). Коннекторы серии UPC. Коннекторы серии APC. Коннекторы типа FC. Адаптер для FC с аттенюатором. Коннектор FC с металлической феррулой. Коннекторы типа ST. Коннекторы типа SC. Biconic. DIN. D4. Е-2000. Коннекторы типа LC. Коннекторы типа MT-RJ. Коннекторы типа VF-45. Коннекторы типа MU. Перспективы для локальных сетей.

Разъемы для оптики

Основные параметры передачи

Ключевые характеристики оптических коннекторов можно разделить на следующие группы: параметры передачи, долговременная стабильность и стойкость к воздействию внешних условий.

Главными параметрами передачи оптических коннекторов являются вносимое затухание и обратное отражение. Эти параметры зависят, главным образом, от таких факторов, как поперечное смещение осей и угла между ними, а также от френелевского отражения оптического сигнала на границе раздела двух оптических сред.

Наибольшее значение для оценки потерь, вносимых разъемным соединением, имеет оптическое затухание. Этот параметр оказывает основное влияние на величину суммарных потерь в оптическом тракте. Величина оптического затухания главным образом зависит от разъюстировки (поперечного отклонения) сердцевин стыкуемых оптических волокон.

Кроме вносимого затухания, важной оптической характеристикой является обратное отражение. Основной источник отраженного сигнала - граница раздела двух сред, например материал оптического волокна и воздуха. Эта составляющая потерь может достигать значительных величин. Кроме того, обратное отражение является непостоянным во времени. Под влиянием внешних воздействий оно в конечном итоге может нарушить стабильность работы системы. Наиболее серьезные проблемы обратное отражение создает для узкополосных лазеров с высокой когерентностью излучения (которые, например, используются в DWDM-системах и в оборудовании для сетей кабельного телевидения).

Вследствие небольшого количества разъемных соединений в тракте требования к величине вносимых ими потерь были несколько снижены по сравнению с требованиями, предъявляемыми, например, к сварным соединениям. Это позволило значительно упростить конструкцию и снизить стоимость изделий, в которых позиционирование стыкуемых волокон ограничивается пассивной поперечной юстировкой.

Технология оконцевания

Производители предлагают различные технологии оконцевания, то есть монтажа коннекторов на оптические волокна .

На определенном этапе (который теперь можно считать первоначальным) предполагалось, что технология создания разъемных соединений будет включать в себя технологические операции по закреплению соединяемых оптических волокон в штекере-заготовке с помощью химического фиксатора. В качестве фиксатора использовался эпоксидный клеи или его аналоги. После закрепления волокно необходимо было сколоть, а затем особым образом отполировать торец разъема с выступающим волокном до достижения требуемых форм торца.

С целью ускорения процесса инсталляции были разработаны технологии без использования эпоксидного клея. Такие технологии используют механическую фиксацию волокна встроенными в коннектор зажимами, термофиксацию клеями-расплавами и т.п. Однако со временем популярность подобных технологий снизилась. Вероятно, причинами этого стала хладотекучесть клеев-расплавов под давлением, вследствие чего оптическое волокно внутри коннектора со временем смещалось вдоль оси, а это влекло за собой ухудшение или потерю физического контакта, и, следовательно, рост вносимых потерь и обратных отражений.

В настоящее время наибольшее распространение получили коннекторы с вмонтированным отрезком оптического волокна в буферном и вторичном покрытиях. Этот отрезок стыкуется с волокном кабеля. Несмотря на то, что вместо одного места стыка получается два, такая технология хорошо зарекомендовала себя на практике. Ее основное достоинство - отсутствие при оконцевании волокон технологической операции полировки торца коннектора, требующей больших затрат времени, а для высокоскоростных сетей - еще и дорогостоящего оборудования шлифовки и контроля. Эти процедуры проводятся в стационарных условиях на предприятии-изготовителе. Подобный подход позволяет производителю практически бесконечно улучшать качество полировки торцов соединяемых волокон, использовать новые технологии, направленные на сокращение потерь и улучшение параметров оптических разъемов, не заставляя при этом покупателя приобретать все более совершенное (и, разумеется, дорогостоящее) оборудование для окончательной подготовки разъемов к работе.

Обеспечение оптического контакта

Технологически сложно добиться получения полностью перпендикулярных торцов с идеальными поверхностями контакта в процессе полировки волокон. Минимизация величины отраженного сигнала требует гарантированного отсутствия воздушного зазора между сердцевинами стыкуемых оптических волокон. Для достижения этого торцы стыкуемых волокон полируются таким образом, чтобы получить сферические поверхности. При стыковке задается продольный прижим волокон, что вызывает упругую деформацию торцов волокон и оптический контакт в области сердцевин соединяемых волокон, при котором воздушный зазор между ними становится минимальным.

Плоские коннекторы (Flat connectors)

Одним из первых решений по подготовке торцевых поверхностей была полировка торца наконечника с укрепленным в нем оптическим волокном перпендикулярно оси волокна. Во избежание непосредственного контакта волокон, который может привести к серьезным повреждениям, - царапинам и сколам, - при таком подходе реализуется углубление около нескольких микрометров (2-3 мкм). Для улучшения характеристик иногда применяется иммерсионный гель, коэффициент преломления которого близок к материалу оптического волокна. Гель заполняет зазор между наконечниками.

Коннекторы серии РС

Способ подготовки торцевых поверхностей под названием "физический контакт" (Physically Contact - PC) предполагает фиксацию оптического волокна в алюминиевом наконечнике. Торец определенным образом полируется с целью достижения полного контакта торцевых поверхностей. Однако при полировке волокна происходят негативные изменения поверхностного торцевого слоя в инфракрасном диапазоне (так называемый "инфракрасный слой"), обусловленные механическими изменениями при полировке. Этот фактор ограничивает применение таких коннекторов на высокоскоростных сетях (565 Мбит/с).

Коннекторы серии SРС (Super Physically Contact)

Для улучшения контакта оптического волокна радиус сердечника был сужен до 20 мм, а в качестве материала наконечника использовался более мягкий цирконий. Благодаря этому подходу снизились такие дефекты полировки, как скосы. Возможность изгиба циркония на субмикронном уровне позволила волокну контактировать даже при скосах в сотни микрон без значительного ухудшения параметров. Однако проблему инфракрасного слоя такая полировка оставляет нерешенной.

Коннекторы серии UPC

Методика полировки торцов UPC (Ultra Physically Contact) характеризуется малыми напряжениями. Полировка осуществляется под контролем сложных и дорогостоящих систем управления. В результате устраняется проблема поверхностного инфракрасного слоя. Параметр отражения значительно улучшен, и такие коннекторы могут применяться в высокоскоростных системах с пропускной способностью 2,5 Гбит/с и выше.

Коннекторы серии APC

Наиболее действенным способом снижения уровня энергии отраженного сигнала является метод полировки торцов оптических волокон под углом 8-12° от перпендикуляра к оси волокна (Angled Physically Contact - АРС). В таком стыке отраженный световой сигнал распространяется под углом большим, чем угол, под которым сигнал вводится в оптическое волокно.

АРС-коннекторы отличаются цветовой маркировкой хвостовиков (как правило, зеленого цвета), поскольку они не могут использоваться совместно с коннекторами другой полировки.

Следует отметить, что некоторые производители меняют местами наименования Super PC и Ultra PC, на что следует обращать внимание во избежание несоответствия соединений проектным параметрам. Особенно это касается вновь устанавливаемых адаптеров и коннекторов на линиях, где уже используется продукция других производителей.

Вообще, при подключении двух коннекторов через адаптер лучше использовать коннекторы одной серии. При сопряжении коннекторов различных серий (flat, super PC, ultra PC) коэффициент отражения смешанной пары будет хуже. Использование других серий совместно с серией APC вообще недопустимо и может привести к выходу одного или обоих коннекторов из строя.

Основные типы разъемов

Коннекторы типа FC

Коннекторы типа FC были разработаны компанией NTT и ориентированы в основном на применение в одномодо-вых линиях дальней связи, специализированных системах и сетях кабельного телевидения. Керамический наконечник диаметром 2,5 мм с выпуклой торцевой поверхностью диаметром 2 мм обеспечивает физический контакт стыкуемых световодов. Наконечник изготавливается со строгими допусками на геометрические параметры, что гарантирует низкий уровень потерь и минимум обратных отражений. Радиус наконечника обеспечивает физический контакт стыкуемых световодов.

Для фиксации коннектора FC на розетке используется накидная гайка с резьбой М8х0,75. В данной конструкции подпружиненный наконечник жестко не связан с корпусом и хвостовиком, что усложняет и удорожает коннектор, однако такое дополнение окупается повышением надежности.

Коннекторы типа FC устойчивы к воздействию вибраций и ударов, что позволяет применять их на соответствующих сетях, например, непосредственно на подвижных объектах, а также на сооружениях, расположенных вблизи железных дорог.

Коннекторы типа ST

Коннекторы БТбыли разработаны специалистами компании AT&T в середине 80-х годов. Удачная конструкция этих коннекторов обусловила появление на рынке большого числа их аналогов.

В настоящее время коннекторы ST получили широкое распространение в оптических подсистемах локальных сетей.

Керамический наконечник диаметром 2,5 мм, с выпуклой торцевой поверхностью диаметром 2 мм обеспечивает физический контакт стыкуемых световодов. Для защиты торца волокна от повреждений при прокручивании в момент установки применяется боковой ключ, входящий в паз розетки; вилка на розетке фиксируется байонетным замком.

Коннекторы ST просты и надежны в эксплуатации, легко устанавливаются, относительно недороги. Однако простота конструкции имеет и отрицательные стороны: эти коннекторы чувствительны к резким усилиям, прилагаемым к кабелю, а также к значительным вибрационным и ударным нагрузкам, ведь наконечник представляет собой единый узел с корпусом и хвостовиком. Этот недостаток ограничивает применение подобного типа коннекторов на подвижных объектах.

Детали коннекторов ST обычно изготавливаются из цинкового сплава с никелированием, реже из пластмассы.

При сборке коннекторов арамидные нити упрочняющей оплетки кабеля укладываются на поверхность задней части корпуса, после чего надвигается и обжимается металлическая гильза. Такая конструкция позволяет в значительной мере снизить вероятность обрыва волокна при выдергивании коннектора. Для дополнительного увеличения механической прочности соединительных шнуров в коннекторах ряда производителей предусматривается обжим на задней части корпуса не только арамидных нитей, но и внешней оболочки миникабеля.

Активное применение коннекторов ST обусловило поиск вариантов улучшения качественных показателей этой продукции. Таким образом, по мере разработки появились SPS- и UPS-версии коннекторов такого типа.

Коннекторы типа SC

Одним из недостатков коннекторов типов FC и ST считается необходимость вращательного движения при подключении к адаптеру. Для устранения этого недостатка, препятствующего увеличению плотности монтажа на лицевой панели, разработаны коннекторы типа SC. Корпус коннектора SC в поперечном сечении прямоугольный. Наконечник не связан жестко с корпусом и хвостовиком.

Подключение и отключение коннектора SC производится линейно (push-pull), что предохраняет наконечники коннекторов от прокручивания друг относительно друга в момент фиксации в адаптере. Фиксирующий механизм открывается только при вытягивании коннектора за корпус. К недостаткам коннекторов SC следует отнести несколько более высокую цену и меньшую механическую прочность относительно рассмотренных ранее коннекторов типов FC и ST. Сила, выдергивающая коннектор SC из адаптера, регламентируется в пределах 40 Н, в то время как для серии FC это значение практически может равняться прочности миникабеля. Как и в случае с коннекторами ST, этот недостаток ограничивает применение коннекторов типа SC на подвижных объектах.

Biconic

Разъемы типа Biconic получили распространение в США благодаря усилиям Lucent Technologies. Корпус коннектора выполняется из пластмассы и может содержать ключ, препятствующий вращательному движению сердечника при вкручивании. Нестандартный подпружиненный керамический сердечник выполнен в форме усечен-ного конуса, а у основания диаметр конуса почти равен внутреннему диаметру корпуса. Такая конструкция на вид обладает большей надежностью, чем ее аналоги. Однако исследования показали, что этот тип коннекторов проигрывает по температурной стабильности характеристик коннекторам с феррулой сложной многослойной конструкции. Кроме того, нестандартная конструкция сердечника усложняла использование таких коннекторов в гибридных разъемах.

В настоящее время коннекторы Biconic полностью уступили свои позиции современным типам коннекторов с сердечником стандартных размеров.

DIN

Традиционно изделия, соответствующие этому стандарту, были широко распространены в Германии и других европейских государствах. Стандартный керамический сердечник диаметром 2,5 мм выступает далеко за пределы корпуса. Пластмассовый корпус снабжен ключом, препятствующим вращению сердечника вокруг своей оси при вкручивании в адаптер.

Коннекторы типа DIN нашли применение в тестовой аппаратуре и телекоммуникационном оборудовании.

D4

Коннекторы D4 также получили распространение в Европе. Основными особенностями их конструкции являются ключ, выступающий за пределы металлического корпуса (нетехнологичная конструкция) и нестандартный керамический сердечник диаметром 2 мм. Для фиксации на розетке коннекторы снабжаются накидной гайкой с резьбой М8х0,75.

Несмотря на указанные недостатки, этот тип коннекторов выпускался довольно долго, и к концу 90-х годов прошлого века уже производились PS-, SPS- и UPS-версии таких коннекторов. Основными производителями коннекторов D4 являются западноевропейские фирмы, однако для производства оборудования, поставляемого европейским операторам, выпуск таких коннекторов налажен и в США.

Е-2000

В коннекторах типа Е-2000 реализована одна из наиболее сложных конструкций. Подключение и отключение коннектора производится линейно (push-pull). Фиксирующий механизм открывается только при вытягивании коннектора за корпус с применением специальной вставки-ключа. Случайное выключение такого коннектора без использования ключа практически невозможно (то есть необходима нагрузка для разрушения защелки корпуса коннектора).

Наконечник в коннекторах типа Е-2000 выполняется в виде многослойной феррулы диаметром 2,5 мм. Корпусы коннекторов и адаптеров изготавливаются из прочного полимера. Основное новшество - пластмассовые шторки, выполняющие функцию заглушек при отключении адаптера. Они также служат для предотвращения попадания пыли на плоскость оптического контакта.

Этот тип коннекторов отличается улучшенными оптическими показателями и стабильными температурными характеристиками, а также высокой надежностью (гарантировано не менее 2 тыс. циклов включения-выключения). Сечение корпуса - квадратное, что позволяет легко реализовать дуплексные коннекторы.

Кроме прочего, следует отметить неоспоримое достоинство этой продукции - снижение влияния человеческого фактора. При включении предупреждены: возможность повреждения торцевой поверхности оптического волокна за счет избыточных усилий, направленных на соединение двух коннекторов; недостаточное усилие включения; неверное позиционирование, а также огрехи при очистке поверхностей оптического контакта.

Коннектор разработан и производится компанией Diamond, уделяющей особое внимание качеству продукции. Кроме западноевропейских государств, производственные мощности этой компании расположены и в странах Восточной Европы. Несмотря на высокие оптические показатели и надежность конструкции, ценовой фактор все-таки сдерживает широкомасштабное внедрение Е-2000.

Появление Е-2000 положило начало новому этапу в создании коннекторов для оптических волокон - разработке коннекторов SFF (Small Form Factor), о которых речь пойдет далее.

Разъемы с увеличенной плотностью монтажа

Анализ преимуществ и недостатков коннекторов, разработанных ранее, показал необходимость создания новых типов коннекторов. При тех же рабочих параметрах, что и у своих предшественников, они должны были обеспечивать большую экономию места, чтобы увеличить плотность монтажа на лицевых панелях.

За основу для размеров адаптеров были приняты габариты разъема для металлических токоведущих жил типа RJ-45. Это позволило использовать общие конструктивные решения под установку RJ-45 и оптических коннекторов разрабатываемых конструкций.

Ведущие производители пассивных оптических компонентов включились в разработку коннекторов нового поколения. Из целого перечня моделей наибольшее распространение получили коннекторы типа LC, MT-RJ,VF-45n MU. Ряд производителей пассивных оптических компонентов уже приобрели лицензии на выпуск коннекторов этих типов, и объемы продаж их постоянно растут.

Коннекторы типа LC

Разработчик коннекторов типа LC - американская компания Lucent Technologies - является одним из ведущих производителей телекоммуникационного оборудования, а следовательно и "законодателем мод" в области пассивной оптики. Этому типу разъемов изначально (и, как впоследствии оказалось, вполне обоснованно) отводилась роль лидера продаж как в Соединенных Штатах, так и в Европе.

Конструкция коннектора сравнительно проста: керамический сердечник диаметром 1,25 мм, не связанный с пластмассовым корпусом. Механизм фиксации - защелка (аналогично RJ-45). Потери, по данным производителя, - порядка 0,2 дБ. Пара коннекторов легко объединяется в дуплекс.

Коннекторы типа MT-RJ

Коннекторы MT-RJ разработаны консорциумом производителей в составе AMp Hewlett-Packard, Siecor LIN, Fujikura и USConnec. Эти коннекторы изготавливаются исключительно в виде дуплексных пар и поэтому не могут считаться универсальными. Технологически они сложны в производстве.

Корпус коннекторов содержит пару металлических направляющих, в которые предварительно установлены два оптических волокна. Оптические волокна кабеля подвариваются к предустановленным волокнам. После установки кабель фиксируется поворотом запирающего ключа.

Средняя величина потерь составляет порядка 0,2 дБ.

Коннекторы типа MT-RJ применяются в коммутаторах, концентраторах и маршрутизаторах многими ведущими производителями оборудования.

Коннекторы типа VF-45

Корпорация 3М также не могла не отреагировать на рыночные тенденции относительно внедрения коннекторов SFF. Компания разработала собственную конструкцию - дуплексный коннектор VF-45 для одномодовых и многомодовых волокон - и стала активно продвигать его на рынке. Он также может реализовываться под названием SJ.

Этот коннектор выполнен по технологии push-pull - подключение производится линейно. Следует отметить, что в целях эргономичности хвостовик коннектора наклонен под углом примерно в 45° от плоскости соединения волокон, то есть опущен вниз. При этом обеспечивается высокая плотность монтажа - используется панель для монтажа RG-45. Вместо керамических феррул, применяемых большинством производителей, используется V-образная канавка, что удешевляет коннектор в производстве.

Производитель гарантирует качество и стабильность характеристик, основываясь на более чем десятилетнем опыте эксплуатации оптических соединителей, выполненных с применением этой технологии. Коннектор снабжен самозащелкивающейся шторкой для предотвращения попадания пыли на поверхность оптического контакта.

Производитель гарантирует высокие показатели качества: уровень затухания не выше 0,75 дБ, а обратное отражение составляет менее 26 дБ.

Как и коннекторы типа MT-RJ, VF-45 предназначены для использования в телекоммуникационном оборудовании: коммутаторах, концентраторах, маршрутизаторах.

Коннекторы типа MU

Коннекторы этого типа разработаны компанией NTT и производятся рядом других компаний. Они представляют собой уменьшенный приблизительно вдвое аналог SC. Механизм фиксации за счет уменьшения габаритов в коннекторах этого типа может быть менее надежен.

Наконечник и центратор - керамические, диаметром 1,25 мм. Корпус выполнен из пластмассы, детали - полимерные и металлические.

Доля оборудования, выпускаемого с коннекторами типа MU, относительно невелика, однако есть перспективы роста, в первую очередь за счет снижения доли использования в оборудовании коннекторов более ранних разработок.

Предполагается, что коннекторы нового поколения постепенно займут лидирующие позиции на рынке, а затем и вовсе вытеснят своих предшественников, если к этому времени не будут разработаны более совершенные конструкции коннекторов, объединяющих в себе достоинства вышеперечисленных моделей и, вместе с тем, превосходящие их по каким-либо факторам (к примеру, по цене или надежности).

Перспективы для локальных сетей

Сегодня активное применение одномодовых оптических волокон при строительстве локальных сетей определяет необходимость производства многих разъемов как в одномодовом, так и в многомодовом исполнении.

Дальнейшее совершенствование структурированных кабельных сетей возможно с использованием материалов, не применяющихся в настоящее время (например, волокна из полиамида в качестве среды передачи). Это определит необходимость разработки специализированных пассивных оптических компонентов, что выделит решения для локальных сетей в отдельную самостоятельную сферу. В результате невозможно будет использовать существующие ныне конструкции пассивных оптических компонентов (в данном случае оптических разъемов) в качестве универсальных. Вместе с тем появление новых конструктивных решений может стать мощным толчком как для модификации существующих, так и для создания специализированных разъемов новых типов.

Еще один движущий фактор совершенствования разъемов - это разработка более высокоскоростного оборудования систем передачи. Следствием этого станут новые требования к пассивным оптическим компонентам, что также обуславливает необходимость совершенствования существующих и создание новых конструкций оптических разъемов.

Многие путают виды оптических разъемов и с ходу мало кто может сказать какой разъем имеет какую полировку. При общении с коллегами наверно часто слышали фразы типа: «ну этот, синенький маленький разъем» или «эмм.. зелененький». В интернете большинство материалов написано сумбурно и не понятно, в данной статье мы постараемся разложить все по полочкам.

Типы полировок

Стоит отметить, что главной проблемой оптических разъемов является оптическое затухание, оно зависит от разъюстировки (поперечного отклонения) сердцевин стыкуемых оптических волокон и оказывает основное влияние на величину суммарных потерь.

Другой проблемой установки оптического коннектора на конце волокна является потеря оптического сигнала, которая вызвана тем, что часть передающегося света отражается обратно в волокно к источнику этого света, лазеру. Обратное отражение (RL -Return Loss) может нарушить работу лазера и структуру передаваемого сигнала. Чтобы это явление предотвратить/уменьшить используют различные виды полировок.

На данный момент выделяют 4 типа полировки:

Хоть в основном используются последние две, давайте рассмотрим каждую по порядку.

PC — Physical Contac . В первых вариациях полировки был предусмотрен исключительно плоский вариант коннектора, однако жизнь показала, что плоский вариант дает место воздушным зазорам между световодами. В дальнейшем торцы коннекторов получили небольшое закругление. В класс PC входят заполированные вручную и изготовленные по клеевой технологии коннекторы. Недостаток данной полировки заключается в том, что возникает такое явление как «инфракрасный слой» — в инфракрасном диапазоне происходят негативные изменения на торцевом слое. Данное явление ограничивает применение коннекторов с такой полировкой в высокоскоростных сетях (>1G).

SPC — Super Physical Contact . По сути та же PC, только сама полировка является более качественной, т.к. она уже не ручная а машинная. Также был сужен радиус сердечника и материалом наконечника стал цирконий. Дефекты полировки конечно снизить удалось, однако проблема инфракрасного слоя осталась

UPC- Ultra Physically Contact . Данная полировка осуществляется уже сложными и дорогими системами управления, в результате чего проблема инфракрасного слоя была устранена а параметры отражения значительно снижены. Это дало возможность коннекторам с данной полировкой применяться в высокоскоростных сетях.

АРС — Angled Physically Contact . На данный момент считается, что наиболее действенным способом снижения энергии отраженного сигнала является полировка под углом 8-12°. В таком исполнении отраженный световой сигнал распространяется под большим углом нежели вводимый в волокно. Коннекторы с косой полировкой отличаются цветом, они обычно зеленые.

Сводные данные можно посмотреть в таблице ниже.

Зависимость вносимых потерь от способа полировки
Серия Вносимое затухание, ДБ Обратное отражение, ДБ
PC 0,2 -25 .. -30
SPC 0,2 -35 .. 0
UPC 0,2 -45 .. 50
APC 0,3 -60 .. 70

Типы разъемов

Оптический разъем FC. Разработка компании NTT. Наконечник диаметром 2,5 мм с выпуклой торцевой поверхностью диаметром 2 мм. Фиксация осуществляется накидной гайкой с резьбой. Это делает дает им устойчивость к вибрациям и ударам, что позволяет использовать их например рядом с ж/д либо на подвижных объектах.

Оптический разъем ST. Разработка компании AT&T. Наконечник диаметром 2,5 мм с выпуклой торцевой поверхностью диаметром 2 мм. Защита торца волокна осуществляется прокручиванием в момент установки боковым ключом, который входит в паз розетки. Вилка фиксируется байонетным замком (от фр. ba?onnette - штык. Пример байонетного замка — крепление объектива фотокамеры). Коннекторы просты в эксплуатации и довольно надежны, однако чувствительны к вибрациям.

Оптический разъем SC . Недостаток коннекторов ST и FC заключается во вращательном движении при включении это накладывает ограничение на плотность включения (сложно вкручивать, когда из рядом много воткнуто). Тип SC сделан по принципу push-pull — нажал вставил/вытащил. Фиксирующий механизм открывается при вытягивании за корпус. Коннектор можно вытащить приложив силу 40Н, тогда как при «вытягивании» ST и FC проще порвать само волокно. Соответственно, на подвижных объектах разъем SC использовать не рекомендуется.

Оптический разъем LC. Разработка компании Lucent Technologies. Керамический сердечник диаметром 1,25 мм, не связанный с пластмассовым корпусом. Фиксируется защелкой, как во всем известном RJ-45. Является самым популярным оптическим разъемом. Пара коннекторов легко объединяется в дуплекс.

Заключение.

В наименовании оптического патч-корда указываются какие коннекторы установлены на концах, а через символ «/» тип полировки. Если тип полировки не указан, значит это прямая полировка. Например, оптиковолоконный патч-корд LC-SC, это значит, что на одном конце будет разъем LC а на другом SC. В спецификации в любом магазине можно подобрать нужную полировку и нужные разъемы.