21.09.2019

Найдите все значения а, при каждом из которых система имеет хотя бы одно решение.


Найдите все значения а, при каждом из которых система уравнений

имеет ровно два решения.

Решение.

Запишем 1-ое уравнение системы в виде: x 2 + 5x + y 2 -y -52 = |x-5y +5|. (*)

1) Так как правая часть равенства неотрицательна, то и левая часть равенства должна быть таковой, а именно: x 2 + 5x + y 2 -y-52 ≥ 0. Выделим из алгебраических сумм (x 2 + 5x) и (y 2 - y) полные квадраты двучленов.

x 2 + 2 х 2,5 + 2,5 2 -2,5 2 + y 2 -2∙y∙0,5 + 0,5 2 -0,5 2 -52 ≥ 0;

(x 2 + 2 х 2,5 + 2,5 2) + (y 2 -2 y 0,5 + 0,5 2) ≥ 52 + 2,5 2 + 0,5 2 ;

(х + 2,5) 2 + (у-0,5) 2 ≥ 52 + 6,25 + 0,25;

(х + 2,5) 2 + (у-0,5) 2 ≥ 58,5. ОДЗ : решения системы находятся среди множества точек, лежащих вне окружности с центром в точке Q(-2,5; 0,5) и радиусом

2) Раскроем модульные скобки в уравнении (*), считая, что выражение под знаком модуля неотрицательно, т.е. х-5у +5 ≥ 0 или 5у ≤ х + 5, отсюда у ≤ 0,2х+1. Тогда равенство (*) запишется в виде:

x 2 + 5x + y 2 -y-52 = x-5y +5. Перенесём все в левую часть и упростим её.

x 2 + 5x + y 2 -y-52-x + 5y-5 = 0;

x 2 + 4x + y 2 + 4у-57 = 0. Выделим из алгебраических сумм (x 2 + 4x) и (y 2 + 4y) полные квадраты двучленов.

x 2 + 4x + 4-4 + y 2 + 4у +4-4-57 = 0;

(x 2 + 4x + 4) + (y 2 + 4у +4) = 57 + 4 + 4;

(х + 2) 2 + (у + 2) 2 = 65. Это уравнение окружности с центром в точке О 1 (-2; -2) и радиусом

Рассматривать будем только те точки этой окружности, которые лежат ниже прямой х-5у +5 = 0, так как мы получили уравнение этой окружности при условии, что х-5у +5 ≥ 0, т.е. при у ≤ 0,2х+1. Заметим, что все точки этой окружности, лежащие ниже прямой х-5у +5 = 0, находятся вне окружности с центром в точке Q(-2,5; 0,5), поэтому удовлетворяют ОДЗ.

3) Теперь раскроем модульные скобки в уравнении (*), считая, что выражение под знаком модуля отрицательно, т.е. х-5у +5 < 0 или 5у > х + 5, отсюда у>0,2х+1. Тогда равенство (*) запишется в виде:

x 2 + 5x + y 2 -y-52 = -x + 5y +5. Перенесём все в левую часть и упростим её.

x 2 + 5x + y 2 -y-52 + x-5y + 5 = 0;

x 2 + 6x + y 2 -6у-47 = 0. Выделим из алгебраических сумм (x 2 + 6x) и (y 2 -6y) полные квадраты двучленов.

x 2 + 6x + 9-9 + y 2 -6у + 9-9-47 = 0;

(x 2 + 6x + 9) + (y 2 -6у +9) = 47 + 9 + 9;

(х + 3) 2 + (у-3) 2 = 65. Это уравнение окружности с центром в точке О 2 (-3; 3) и радиусом

Рассматривать будем только те точки этой окружности, которые лежат выше прямой х-5у +5 = 0, так как мы получили уравнение этой окружности при условии х-5у +5 < 0, т.е. при условии у > 0,2х+1. Заметим, что все точки этой окружности, лежащие выше прямой х-5у +5 = 0, находятся вне окружности с центром в точке Q(-2,5; 0,5), поэтому удовлетворяют ОДЗ.

4) Найдем точки пересечения окружностей с центрами в точках О 1 и О 2 . Это также точки пересечения любой из этих окружностей с прямой х-5у +5 = 0. Для определенности возьмем уравнение первой из окружностей и решим систему:

Из 2-го уравнения выразим х через у и подставим в 1-ое уравнение.

Упростим и решим 2-ое уравнение полученной системы.

(5у-3) 2 + (у + 2) 2 = 65;

25у 2 -30у + 9 + у 2 +4у + 4-65 = 0;

26у 2 -26у-52 = 0;

у 2 -у-2 = 0. По теореме Виета у 1 + у 2 =1, у 1 у 2 = -2. Отсюда у 1 = -1, у 2 = 2.

Тогда х 1 = 5 у 1 -5 = 5 (-1)-5 = -10; х 2 = 5 у 2 -5 = 5 2-5 = 2.

Точки пересечения окружностей с центрами О 1 и О 2 лежат на прямой х-5у +5 = 0, и это точки Т(-10; -1) и А(5; 2).

5) Разберемся, что представляет собой прямая у-2 = а(х-5). Запишем это уравнение в виде у = а(х-5) + 2 и вспомним, как получается график функции y = f (x- m ) + n из графика функции y = f (x ). Он получается переносом графика функции y = f (x ) на m единичных отрезков вдоль оси Ох и на n единичных отрезков вдоль оси Оу. Следовательно, график функции у = а(х-5) + 2 можно получить из графика функции у = ах переносом на 5 единиц вправо и на 2 единицы вверх. Другими словами, прямая пройдет через точку А(5; 2) и должна иметь такой угловой коэффициент а , чтобы пересечь наши окружности с центрами в точках О 1 и О 2 ровно в двух точках. Это произойдет только в тех случаях, когда прямая, проходя через точку А, общую для обеих окружностей, далее будет пересекать только одну из них. Предельными положениями нашей прямой (с параметром а ) будут касательные к окружностям в точке А. Нам понадобятся не сами уравнения касательных, но их угловые коэффициенты. Как мы их получим?

6) Радиус О 1 А, проведенный в точку касания будет перпендикулярен касательной. Угловые коэффициенты k 1 и k 2 двух взаимно перпендикулярных прямых y = k 1 x + b 1 и y = k 2 x + b 2 подчиняются закону: k 1 k 2 = -1. Составим уравнения прямой О 1 А и прямой О 2 А, определим угловой коэффициент каждой прямой, а затем найдем угловые коэффициенты касательных, являющихся предельными положениями прямой у = а(х-5) + 2. Промежуток между найденными значениями параметра а и будет ответом задачи.

Используем формулу уравнения прямой, проходящей через две данные точки (х 1 ; у 1) и (х 2 ; у 2). Эта формула имеет вид:

Составим уравнение прямой, проходящей через точки О 1 (-2; -2) и А(5; 2). У нас х 1 = -2, у 1 = -2, х 2 = 5, у 2 = 2. Подставляем эти значения в формулу:

Итак, уравнение касательной в точке А к окружности с центром в точке О 1 имеет вид.

1. Задача.
При каких значениях параметра a уравнение (a - 1)x 2 + 2x + a - 1 = 0 имеет ровно один корень?

1. Решение.
При a = 1 уравнение имеет вид 2x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4a 2 - 8a = 0, откуда a = 0 или a = 2.

1. Ответ: уравнение имеет единственный корень при a О {0; 1; 2}.

2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4ax +8a +3 = 0.
2. Решение.
Уравнение x 2 +4ax +8a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16a 2 -4(8a +3) > 0. Получаем (после сокращения на общий множитель 4) 4a 2 -8a -3 > 0, откуда

2. Ответ:

a О (-Ґ ; 1 – Ц 7 2
) И (1 + Ц 7 2
; Ґ ).

3. Задача.
Известно, что
f 2 (x ) = 6x -x 2 -6.
а) Постройте график функции f 1 (x ) при a = 1.
б) При каком значении a графики функций f 1 (x ) и f 2 (x ) имеют единственную общую точку?

3. Решение.
3.а. Преобразуем f 1 (x ) следующим образом
График этой функции при a = 1 изображен на рисунке справа.
3.б. Сразу отметим, что графики функций y = kx +b и y = ax 2 +bx +c (a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx +b = ax 2 +bx +c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6x -x 2 -6 к нулю. Из уравнения 36-24-4a = 0 получаем a = 3. Проделав то же самое с уравнением 2x -a = 6x -x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.

4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2ax -3a і 0 содержит отрезок .

4. Решение.
Первая координата вершины параболы f (x ) = x 2 -2ax -3a равна x 0 = a . Из свойств квадратичной функции условие f (x ) і 0 на отрезке равносильно совокупности трех систем
имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x 2 + (2a -2)x - 3a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 +a -6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.

6. Задача (10 кл.)
Найти все значения a , при которых график функции или, после очевидных преобразований, a -2 = | 2-a | . Последнее уравнение равносильно неравенству a і 2.

6. Ответ: a О .

Подводим итоги. Ограничение на параметр даёт только второе условие из ОДЗ: a ∈[−4; 4], а требование о несовпадении корней выполняется, если исключить из этого промежктка a = ±3.

Ответ: a ∈[−4;−3)∪(−3; 3)∪(3; 4]

Как видите, коэффициенты здесь подобраны так, что алгебраические операции не сложны и не занимают много времени. Но, если вы забыли об особенностях квадратных корней и упустили из виду именно условие 2) из ОДЗ, то решения не получите вообще.
Надеюсь, что многие выпускники всё-таки справились с этой задачей, и желаю им дальнейших успехов на экзаменах по выбору.

Задача 2

Найдите все значения а , при каждом из которых уравнение

x − 2a _____ x + 2 + x − 1 ____ x a = 1

Имеет единственный корень.

Решение.

Начинаем, конечно, с ОДЗ: x ≠ −2 и x a .
Преобразуем:

Привели дроби к общему знаменателю и сразу отбросили знаменатель. Новое уравнение будет равносильно заданному только с учётом ограничений ОДЗ.

Почему можно так делать?
- Потому что дроби с равными знаменателями равны тогда, когда равны их числители.
Когда нельзя так делать?
- Когда не проверено неравенство знаменателя нулю или забыли предварительно записать ОДЗ.
Кому можно, а кому нельзя так делать?
- Аккуратным и вдумчивым ученикам можно, невнимательным нельзя. Последним надо переносить всё в левую часть равенства, упрощать выражение в виде полной дроби, затем переходить к совокупности условий: "дробь равна нулю, если её числитель равен нулю, а знаменатель не равен нулю".

После раскрытия скобок и приведения подобных членов получим

x 2 − 2ax + 2a 2 − x − 2 = −2a .

Окончательно приведём к виду, характерному для квадратного уравнения:

x 2 − (2a + 1)·x + (2a 2 + 2a − 2) = 0.

Дискриминант этого уравнения

D = (2a + 1) 2 − 4·(2a 2 + 2a − 2) = −4a 2 − 4a + 9.

Заданное в условии задачи уравнение может иметь единственное решение в двух случаях. Во-первых, когда дискриминант полученного квадратного уравнения равен нулю, а его единственный корень не совпадает с ограничениями ОДЗ. Иначе его нужно будет отбросить и решений не останется совсем. Во-вторых, когда квадратное уравнение имеет два разных корня (дискриминант больше нуля), но один и только один из них не удовлетворяет ОДЗ.

Случай I. D = 0.

−4a 2 − 4a + 9 = 0 при a = (−1 ± √10__ )/2.

При этом корень уравнения x = (2a + 1)/2 = a + 0,5 . Очевидно, что при полученных значениях a он не совпадает ни с a , ни с −2.
Таким образом, получены два искомых значения параметра.

Случай II.

Определим те значения a x = а .

a 2 − (2a + 1)·a + (2a 2 + 2a − 2) = 0.
a 2 + a − 2 = 0.
a = 1 и a = −2.

Определим те значения a , при которых корнем квадратного уравнения является x = −2.

(−2) 2 − (2a + 1)·(−2) + (2a 2 + 2a − 2) = 0.
a 2 + 3a + 2 = 0.
a = −1 и a = −2.

При этих значениях параметра а можно продолжить исследование дискриминанта и второго корня квадратного уравнения. Но проще проверить их подстановкой в исходное уравнения условия задачи.

a = 1

x − 2·1 _______ x + 2 + x − 1 ____ x − 1 = 1; x − 2 _____ x + 2 + 1 = 1; x − 2 _____ x + 2 = 0; x = 2.

a = −1

x − 2·(−1) _________ x + 2 + x − 1 _______ x − (−1) = 1; x + 2 ____ x + 2 + x − 1 ____ x + 1 = 1; 1 + x − 1 ____ x + 1 = 1; x − 1 ____ x + 1 = 0; x = 1.

a = −2

x − 2·(−2) _________ x + 2 + x − 1 _______ x − (−2) = 1; x + 4 ____ x + 2 + x − 1 ____ x + 2 = 1; x + 4 + x − 1 = x + 2; x = −1.

Таким образом все три значения удовлетворяют условию задачи.

Ответ: a ∈{(−1 − √10__ )/2; −2; −1; 1; (−1 + √10__ )/2.}

Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.

Уравнение вида f (x ; a ) = 0 называется уравнением с переменной х и параметром а .

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х , удовлетворяющие этому уравнению.

Пример 1. ах = 0

Пример 2. ах = а

Пример 3.

х + 2 = ах
х – ах = -2
х(1 – а) = -2

Если 1 – а = 0, т.е. а = 1, то х 0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

(а 2 – 1) х = 2а 2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х .

Например:

если а = 5, то х = = ;

если а = 0, то х = 3 и т. д.

Дидактический материал

1. ах = х + 3

2. 4 + ах = 3х – 1

3. а = +

при а = 1 корней нет.

при а = 3 корней нет.

при а = 1 х – любое действительное число, кроме х = 1

при а = -1, а = 0 решений нет.

при а = 0, а = 2 решений нет.

при а = -3, а = 0, 5, а = -2 решений нет

при а = -с , с = 0 решений нет.

Квадратные уравнения с параметром

Пример 1. Решить уравнение

(а – 1)х 2 = 2(2а + 1)х + 4а + 3 = 0

При а = 1 6х + 7 = 0

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

20а + 16 = 0

20а = -16

Если а < -4/5, то Д < 0, уравнение имеет действительный корень.

Если а > -4/5 и а 1, то Д > 0,

х =

Если а = 4/5, то Д = 0,

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

Д = 4(а + 1) 2 – 4(9а – 5) = 4а 2 – 28а + 24 = 4(а – 1)(а – 6)

4(а – 1)(а – 6) > 0

по т. Виета: х 1 + х 2 = -2(а + 1)
х 1 х 2 = 9а – 5

По условию х 1 < 0, х 2 < 0 то –2(а + 1) < 0 и 9а – 5 > 0

В итоге 4(а – 1)(а – 6) > 0
- 2(а + 1) < 0
9а – 5 > 0
а < 1: а > 6
а > - 1
а > 5/9

(Рис. 1 )

< a < 1, либо a > 6

Пример 3. Найдите значения а , при которых данное уравнение имеет решение.

х 2 – 2(а – 1)х + 2а + 1 = 0

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а (а – 4) 0

а(а – 4)) 0

а(а – 4) = 0

а = 0 или а – 4 = 0
а = 4

(Рис. 2 )

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а а 2) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + х а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

1. При а = - 1/7, а = 0, а = 1

2. При а = 0

3. При а = 2

4. При а = 10

5. При а = - 2

Показательные уравнения с параметром

Пример 1 .Найти все значения а , при которых уравнение

9 х – (а + 2)*3 х-1/х +2а *3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х, получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у , тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

(у – 2)(у а ) = 0, откуда у 1 =2, у 2 = а .

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log 3 2 , или х 2 – х log 3 2 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 3 2 – 4 < 0.

Если у = а , т.е. 3 х+1/х = а то х + 1/х = log 3 а , или х 2 – х log 3 а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 3 2 – 4 > 0, или |log 3 а| > 2.

Если log 3 а > 2, то а > 9, а если log 3 а < -2, то 0 < а < 1/9.

Ответ: 0 < а < 1/9, а > 9.

Пример 2 . При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х 1 = -3, х 2 = а = >

а – положительное число.

Ответ: при а > 0

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х - (5а -3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Логарифмические уравнения с параметром

Пример 1. Найти все значения а , при которых уравнение

log 4x (1 + ах ) = 1/2 (1)

имеет единственное решение.

Решение. Уравнение (1) равносильно уравнению

1 + ах = 2х при х > 0, х 1/4 (3)

х = у

ау 2 –у + 1 = 0 (4)

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.Чтобы решить неравенство (3), построим графики функций Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990

  • Крамор В.С . Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
  • Галицкий М.Л., Гольдман А.М., Звавич Л.И . Сборник задач по алгебре. – М.: Просвещение, 1994.
  • Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. Решение экзаменационных задач. – М.: Дрофа, 1998.
  • Макарычев Ю.Н. и др. Дидактические материалы по алгебре 7, 8, 9 кл. – М.: Просвещение, 2001.
  • Саакян С.И., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа для 10–11-х классов. – М.: Просвещение, 1990.
  • Журналы “Математика в школе”.
  • Л.С. Лаппо и др. ЕГЭ. Учебное пособие. – М.: Экзамен, 2001–2008.
  • Найдите все значения параметра а, при которых система имеет ровно два решения.

    Первое уравнение системы перепишем иначе, выделив квадраты двучленов:

    Первое слагаемое есть расстояние между точками (x; y) до точки А(-1; 2).
    Второе слагаемое есть расстояние между точками (x; y) до точки В(2; 6).
    Сумма расстояний от точки (x; y) до двух других должна быть равна 5.

    Расстояние между точками А и В легко вычислить, оно равно 5.

    Точке (x; y) ничего не остаётся, как лежать на отрезке АВ. Это значит, что
    первое уравнение системы задаёт отрезок АВ (отрезок - график уравнения).

    Второе уравнение задаёт параболу. Она должна пересекать отрезок в двух точках.
    При маленьких а пересечений нет. Первое пересечение возникнет в тот момент,
    когда парабола пройдёт через точку А(-1; 2). Найдите это значение а (а = 1).

    Если а капельку увеличить, пересечение останется единственным... до тех пор,
    пока парабола не пройдёт через точку В(2; 6). Найдите это значение а (а = 2).

    Сейчас и с этого момента пересечений ровно два. Но до тех пор, пока...
    парабола не коснётся отрезка. Напишем сначала уравнение АВ.

    Прямая y = kx + b проходит через А(-1; 2) и В(2; 6). Выполняется система:

    Найдя из этой системы значения k и b, напишем уравнение прямой АВ:

    Теперь потребуем, чтобы квадратное уравнение имело один корень:

    Единственный корень при этом находится в пределах отрезка АВ.

    При найденном значении параметра решение у начальной системы одно.
    При а, больших найденного, пересечений у параболы с отрезком нет.