22.05.2019

Отличается ли высотомер от барометра. Прибор для измерения относительной высоты: описание, назначение, классификация устройств


Данная статья посвящена приборам, которыми производят измерение такого параметра, как высота. Однако прежде чем приступать к описанию самого инструмента, давайте разберемся, что представляет собой этот самый показатель.

Понятие высоты

Упомянутый параметр является относительной величиной, то есть данное значение всегда определяется относительно чего-либо. Чаще всего его измеряют относительно уровня моря, это значит, что линия морской поверхности принята за точку отсчета.

Такая система напоминает определение градуса воды по Цельсию, когда точкой отсчета принята температура перехода воды из жидкого состояния в твердое, и наоборот. Так же и с измерением высоты, положительным считается значение выше уровня моря, а отрицательным - ниже. В особых случаях точкой отсчета может выбираться любая другая поверхность. Например, высоту дома никто не будет измерять относительно уровня моря, здесь началом отсчета выступает на которой построено здание. По такому же принципу измеряют все частные случаи: высоту дерева, строения и т. д. А вот высоту горы или любой точки а также объекта, летящего в атмосфере (самолет, вертолет и т. п.) измеряют относительно уровня моря. Читатель может задать вопрос: «А какой принято использовать прибор для измерения относительной высоты?» Ответ на этот вопрос вы найдете, если прочитаете статью до конца.

Прибор для измерения относительной высоты: история развития и основные виды

С древности люди использовали для строительства и определения рельефа такой инструмент, как уровень. Это устройство стало основой и для современного измерительного механизма. К древнему уровню была приделана трубка, так и получился самый элементарный прибор для измерения относительной высоты, который назвали нивелиром, что означает «выравнивать». Элементарный нивелир представляет собой горизонтальную рейку и вертикальную планку, к которой присоединен отвес. Однако с развитием науки совершенствуются и инструменты. Прибор для измерения высоты не стал исключением. Так, современные нивелиры можно разделить на три основные группы. Первая - наиболее распространенная, к ней относятся приборы, в основу которых заложена высококачественная оптика. Вторая группа - это лазерные устройства. Эти приборы характеризуются И третья - самая «молодая» - это цифровые нивелиры.

Оптические измерительные инструменты

Такое устройство представляет собой цилиндрический уровень (либо компенсатор) и оптическую систему, которая помещена в металлический корпус (трубу). Уровень необходим для выставления визирной оси в горизонтальное положение.

Для проведения измерений нивелир устанавливается на треногу с опорной площадкой. Цилиндрический уровень представляет собой ампулу с жидкостью (эфир, спирт). Часть пространства, заполненную спиртовыми парами, называют пузырьком уровня. На верхней поверхности ампулы нанесена шкала с шагом в два миллиметра, средняя ее точка называется нуль-линией.

Лазерный нивелир

В данных устройствах в дополнение к оптическим системам пришли лазерные светодиоды, но, по сути, названное устройство мало чем отличается от оптического. Главной его особенностью является очень тонкий, идеально ровный луч, проецируемый на измеряемую поверхность. Это значительно упрощает процесс определения высоты.

Цифровой прибор для измерения относительной высоты

Данный инструмент существенно отличается от своих предшественников. Он не только изменил свой внешний облик и внутреннее устройство, но и значительно расширил свои возможности. Цифровой нивелир - это измерительный прибор, который способен не только проводить измерение, но и проецировать лучи, плоскости на любую поверхность. Этот инструмент просто незаменим при проведении строительных и ремонтных работ. Упомянутое устройство характеризуется высокой и простотой в применении, таким инструментом сможет пользоваться даже новичок.

Принцип работы цифрового нивелира

Основой рассматриваемого устройства являются электромагнитная система маятников и светодиодная (лазерная) оптическая система, которая предназначена для проецирования лазерных лучей в виде точек или линий. Один такой прибор может проецировать сразу несколько плоскостей, что очень удобно при строительстве. Для обеспечения точности измерений в используется металлический маятник, который выравнивает всю электронную и оптическую часть прибора относительно уровня земли. Даже если устройство стоит неточно или его сдвинули в процессе работы, маятник выставит схему параллельно земле, и проецируемая поверхность останется точной. Рассмотрим, как это происходит. Под маятником располагается несколько электрических или природных магнитов. Благодаря созданному магнитному полю предотвращается раскачивание маятника при изменении положения нивелира. При установке устройства данный элемент свободно раскачивается. Однако при прохождении через в материале (металле) наводится электрическое поле, трансформируемое в тепловую энергию, которая и тормозит всю систему.

Оптическая система прибора строится на светодиодах, создающих горизонтальные, вертикальные и диагональные лучи. Проходя через систему линз, они преобразуются в линии, которые и проецируются на измеряемых поверхностях.

Достоинства и недостатки цифровых нивелиров

Главным преимуществом такого прибора является простота и наглядность, а также возможность проводить работы с базовой плоскостью в нескольких точках одновременно. Также следует упомянуть и возможность построения горизонтальных и вертикальных плоскостей, причем сразу в разных направлениях.

Недостатком рассматриваемого устройства является его высокая стоимость. Изо всех них только устройства третьего класса соизмеримы по цене с оптическими нивелирами. Их можно использовать только при проведении ремонтных работ внутри помещения, где высокая точность большой роли не играет. Например, для разметки полов, стен, потолков. А для проведения геодезических измерений и для разметки грандиозных строящихся объектов требуются приборы первого или второго класса точности. Однако дальность применения таких инструментов все равно ограничена 600 метрами. При необходимости проводить измерения на большие расстояния следует использовать оптические нивелиры.

Классификация цифровых нивелиров

1. Точечный прибор для измерения высоты. Он напоминает лазерную указку, то есть, проецирует на измеряемую поверхность одну или несколько точек.

2. Статичный, или позиционный цифровой нивелир. Это устройство имеет два источника, проецирующих лазерные лучи на перпендикулярно размещенные призмы, которые преобразуют их в две видимые плоскости. В результате получаются две пересекающиеся крестом плоскости. В случае использования сложных оптических систем, содержащих более трех полупроводниковых диодов, появляется возможность проводить проецирование большого количества плоскостей, что весьма удобно при работе с многомерными объектами. Кроме того, чем больше плоскостей, тем больше мастеров могут заниматься ремонтными или строительными работами. Позиционные нивелиры также снабжаются функцией «лазерного отвеса». Это дополнительные диоды, благодаря которым можно направлять луч одновременно на пол и на потолок.

3. Ротационный цифровой нивелир. В таком устройстве лазер прикреплен к валу электродвигателя, то есть он может вращаться на 360 градусов. Кроме того, в таких приборах (вместо призмы) используется фокусирующая линза. В результате, вместо плоскости человек видит небольшую точку, однако при включении по всей рабочей области или площади комнаты проецируется непрерывная линия.

Могут пригодиться во время горных походов и спортивных восхождений. На этот раз остановимся поподробнее на расшифровке тех привычных или, напротив, необычных функций, которые могут вызвать интерес у спортсменов. Речь пойдет, разумеется, не обо всем многообразии функций, которыми владеют профессиональные часы, а лишь о тех, которые нужны непосредственно при взятии высоты (в походе или соревновании): GPS-навигация, альтиметр, барометр, компас и пульсометр. Заодно и сравним, как с этими функциями справляются самые «прокачанные» часы трех ведущих спортивных брендов : Suunto, Casio и Timex.

Глоссарий:

GPS (Global Positioning System) – спутниковая система навигации, позволяющая отследить точное местоположение в координатах, измерить расстояние от пункта А до пункта Б и проложить маршрут. Пригодится скорее альпинисту, чем скалолазу.

Альтиметр – прибор для измерения высоты над уровнем моря. Необходим при ориентировании в горах, в т.ч. в условиях плохой видимости; оповещает о перепадах высот, о достижении заданной точки и т.д.

Барометр – прибор для измерения атмосферного давления. Спрогнозирует погодные условия, и гроза не застанет Вас врасплох!

Пульсометр – устройство персонального мониторинга частоты сокращений сердца (ЧСС). Незаменимый помощник на тренировках и соревнованиях.

Первое место: Suunto Ambit GPS

Мужские часы Suunto Ambit Black GPS
РРЦ: 27990 р.

  • Полнофункциональная система GPS с поддержкой путевых точек и навигации по маршруту.
  • Функция «Путь домой».
  • Корректировка времени по спутниковому сигналу.
  • Быстрое обновление данных о темпе и скорости Вашего передвижения (FusedSpeed™). Значение скорости определяется по уникальной комбинации данных акселерометра (датчика ускорения) и GPS-навигатора. Сигнал GPS-навигатора фильтруется на основе данных об ускорении, позволяя получить более точные показания при неизменной скорости и быстрее отреагировать на ее изменение.
  • Все данные о маршрутах записываются по кругу, т.е. при заполнении памяти новые записи записываются поверх старых.
  • Серьезный и увлекательный интернет-дневник спортивных событий на Movescount.com! Здесь можно планировать маршруты и переносить их в память наручных часов (с помощью USB-кабеля); анализировать достижения, оптимизировать тренировки и обмениваться спортивной информацией с друзьями.

3D-компас

Когда Вы пользуетесь обычным компасом, для обеспечения точности показаний необходимо держать компас параллельно земле. 3D-компасы Suunto учитывают наклон, позволяя получать точные показания независимо от того, как повернута кисть вашей руки.

Альтиметр

  • Вычисление общей длины подъема/спуска и возможность точного измерения вертикальной скорости (фиксация координатных точек GPS каждые 60 секунд). В любой момент, взглянув на часы, Вы сможете узнать, как долго еще осталось идти.
  • Автоматическое переключение между высотомером и барометром. Интеллектуальная функция определяет, движетесь Вы или нет, и на основании этого выбирает режим. При восхождении прибор учитывает изменение высоты над уровнем моря. А во время остановки на привал - изменение барометрического давления.

Барометр

  • Графическое отображение текущей температуры и изменения погоды за последние 27 часов.
  • Можно создать собственный профиль, где давление будет указываться в мм рт.ст.

Пульсометр

  • Подсчет калорий и ЧСС в режиме реального времени.
  • Отображает эффективность текущей тренировки по программе Peak Training Effect (PTE) на основе Вашей физической готовности к максимальным нагрузкам. Доказано, что данный показатель способен в полной мере заменить лабораторные тесты.
  • Определяет время, необходимое для полного восстановления организма после тренировки в зависимости от ее интенсивности и отображает полученное значение на дисплее (не только в абсолютных величинах, но и в процентах и в графическом виде).
  • Возможно совместное использование пульсометра и кардиопередатчика (для получения большей информации о тренировке).
  • Все данные о тренировках записываются по кругу, т.е. при заполнении памяти новые записи записываются поверх старых.

Второе место : Timex Expedition WS4 (Wide Screen 4 Functions)

Мужские часы Timex Expedition WS4 T49664
РРЦ: 15370 р.

Альтиметр

  • Показывает измерение в футах или метрах.
  • Отслеживает текущую, наивысшую и накопленную высоту.
  • Схематично отображает подъем и спуск.
  • Функция «защёлка альтиметра» позволяет избежать ложных колебаний высоты при изменении атмосферного давления.
  • Измеряет время до достижения целевой высоты.
  • Сигнал достижения высоты.

«Когда прозвучит звуковой сигнал, Вы будете знать, что достигли установленной высоты. Это короткое напоминание позволит Вам оценить Ваше состояние и решить, насколько успешно Вы продвинулись в достижении своей цели».
Conrad Anker (Конрад Анкер, всемирно известный альпинист, который тестировал эти часы)

Барометр

  • Графически отображает изменение давления уровня моря за последние 36 часов; отслеживает высокое, низкое и текущее давление.
  • Проецирует информацию в миллибарах (МВ) или в дюймах рт.ст. (Hg)
  • Показывает температуру по Цельсию или Фаренгейту.
  • Иконки прогноза погоды. Часы могут предсказывать погоду на ближайшие 4-6 часов на основании тенденций изменения атмосферного давления в предыдущие 12 часов.

Высокое давление обычно говорит о ясной погоде, в то время как низкое давление обещает пасмурную погоду, с большой вероятностью осадков.

Третье место: Casio ProTrek PRG-240-1Е («Saltoro Kangri»)

Мужские часы Casio Protrek PRG-240-1E
РРЦ: 9990 р.

Альтиметр

  • График изменения высоты с отображением разницы измерений в реальном времени.
  • Значение общей величины подъема/спуска. Данная функция суммирует все пройденные вами этапы восхождения. Вы сразу же можете увидеть, насколько высоко поднялись.
  • Автоматическое сохранение данных в записной книжке.

Барометр

  • Измерение атмосферного давления с возможностью изменения единицы измерения.
  • Встроенный датчик температуры от -10° до +60°С с точностью 0,1°C.
  • График измерения атмосферного давления с отображением разницы измерений.
  • Калибровка датчика атмосферного давления.

СРАВНИТЕЛЬНАЯ ТАБЛИЦА

Высотомер (в первой половине XX в. - альтиметр , от лат. altus - "высоко", в современном английском языке также altimeter) - прибор, указывающий высоту полета. В настоящее время чаще используется определение высотомер . В авиации используются на барометрический и радиотехнический (иначе радиовысотомер ) способы определения высоты.

В современных радиовысотомерах используются частотный (радиовысотомеры малых высот) и импульсный (радиовысотомеры больших высот) методы измерения высоты. Они показывают истинную высоту полета, что является их преимуществом перед барометрическими высотомерами, так как барометрическая высота, как правило, отличается от истинной.

Барометрический высотомер представляет собой обыкновенный барометр, у которого вместо шкалы давлений поставлена шкала высот. Такой высотомер определяет высоту полета самолета косвенным путем, измеряя атмосферное давление, которое изменяется с высотой по определенному закону. Барометрический способ измерения высоты связан с рядом ошибок, которые, если их не учитывать, приводят к значительным погрешностям в определении высоты. Несмотря на это барометрические высотомеры ввиду простоты и удобства пользования широко применяются в авиации. Барометрические высотомеры имеют инструментальные, аэродинамические и методические ошибки.

  • Инструментальные ошибки высотомера возникают вследствие несовершенства изготовления прибора и неточности его регулировки. Причинами инструментальных ошибок являются несовершенство изготовления механизмов высотомера, неточность и непостоянство регулировок, износ деталей, изменение упругих свойств анероидной коробки, люфты и т. д. Каждый высотомер имеет свои инструментальные ошибки. Они определяются путем проверки высотомера на контрольной установке, заносятся в специальную таблицу и учитываются в полете.
  • Аэродинамические ошибки возникают в результате неточного измерения высотомером атмосферного давления на высоте полета вследствие искажения воздушного потока, обтекающего самолет, особенно при полете на больших скоростях. Величина этих ошибок зависит от скорости и высоты полета, типа приемника, воспринимающего атмосферное давление, и места его расположения. Например, на высоте 5000 м ошибка в измерении давления в 1 мм рт. ст. дает ошибку в высоте, равную 20 м, а на высоте 11 000 м такая же ошибка в измерении давления вызывает ошибку в измерении высоты около 40 м. Аэродинамические ошибки определяются при летных испытаниях самолетов и заносятся в таблицу поправок. Для упрощения учета инструментальных и аэродинамических поправок составляется таблица показаний высотомера с учетом суммарных поправок, которая помещается в кабине самолета.
  • Методические ошибки возникают вследствие несовпадения фактического состояния атмосферы с расчетными данными, положенными в основу для расчета шкалы высотомера. Шкала высотомера рассчитана для условий стандартной атмосферы (МСА) на уровне моря: давление воздуха P0 = 760 мм рт. ст., температура t0 = + 15° С, температурный вертикальный градиент trp = 6,5° на 1000 м высоты. Использование стандартной атмосферы предполагает, что заданной высоте соответствует вполне определенное давление. Но так как в каждом полете действительные условия атмосферы не совпадают с расчетными, то высотомер показывает высоту с ошибками. Барометрическому высотомеру присущи также ошибки вследствие того, что он не учитывает изменения топографического рельефа местности, над которой пролетает самолет. Методические ошибки барометрического высотомера делятся на три группы:
    • Ошибки от изменения атмосферного давления у земли. В полете барометрический высотомер измеряет высоту относительно того уровня, давление которого установлено на шкале давлений высотомера. Он не учитывает изменения давления по маршруту. Обычно атмосферное давление в различных точках земной поверхности в один и тот же момент неодинаково. Перед вылетом стрелки высотомера устанавливают на нуль, при этом шкала давлении высотомера установится на давление аэродрома вылета. Если пилот по маршруту над равнинной местностью будет выдерживать заданную приборную высоту, то истинная высота будет изменяться в зависимости от распределения атмосферного давления у земли. При падении атмосферного давления по маршруту истинная высота будет уменьшаться, при повышении давления увеличиваться. Изменение истинной высоты происходит вследствие изменения давления у земли над пролетаемой местностью относительно давления, установленного на высотомере. Изменение атмосферного давления с высотой характеризуют барометрической ступенью- высотой, соответствующей изменению давления на 1 мм рт. ст. Барометрическая ступень на различных высотах различна. С увеличением высоты барометрическая ступень увеличивается. В практике барометрическую ступень для малых высот берут равной 11м. Следовательно, каждому миллиметру изменения давления у земли соответствует 11,1 м высоты.
    • Ошибки от изменения температуры воздуха. Возникает из-за отклонения температуры у земли от значения температуры стандартной атмосферы. При уменьшении температуры у земли менее 15°С высотомер будет показывать заниженное значение высоты и наоборот. Температурная ошибка может достигать величины, равной 8-12% от измеряемой высоты. Температурную ошибку учитывают на

Двухстрелочный высотомер ВД-10 (рис. 67) предназначен для измерения высоты полета само­лета относительно уровня той изобарической поверхности, атмос­ферное давление которой установлено на барометрической шкале. Принцип действия высотомера основан на измерении атмосферного давления с поднятием на высоту с помощью блока анероидных ко­робок.

Знание высоты полета необходимо экипажу для определения высоты полета над пролетаемой местностью, для предотвращения столкновения самолета с земной поверхностью, для контроля за выдерживанием высоты при ее наборе или снижении, выдерживание заданного эшелона полета по трассе, а также для решения некоторых навигационных задач.

Высотомеры ВД-10 установлены на левой и средней панелях приборной доски. Питаются высотомеры статическим давлением от приемников воздушного давления ПВД-7 системы питания анероидно-мембранных приборов.

Устройство и работа. Высотомер ВД-10 (рис. 68) состоит из гер­метичного корпуса, в который подается статическое давление воз­духа, окружающего самолет. Полость корпуса соединена при помо­щи трубопровода с приемниками статического давления, располо­женными между шпангоутами № 9-10 на правом и левом бортах. Чувствительным элементом прибора является блок анероидных коробок, состоящих из гофрированных мембран, изготовленных из фосфористой бронзы. Воздух из коробок выкачан до остаточного давления 0,15÷0,2 мм рт. ст. У земли анероидные коробки 18 на­ходятся в наиболее сжатом состоянии. При этом сила упругости мембран уравновешивает силу атмосферного давления.

При подъеме на высоту атмосферное давление уменьшается, анероидные коробки расширяются и через передающий механизм воздействуют на стрелки высотомера, которые по шкале показы­вают высоту полета самолета.

На лицевой стороне прибора расположены два подвижных тре­угольных индекса 4 и 5, указывающие высоту, соответствующую изменению барометрического давления относительно давления 760 мм рт. ст. Внешний индекс 5 указывает высоту в метрах, а внут­ренний 4 - в километрах. Треугольные индексы используются для взлета и посадки самолета на высокогорном аэродроме, где давле­ние меньше 670 мм рт. ст. Кремальера 24 служит для установки стрелок прибора в нулевое положение перед вылетом, а также для внесения поправок на изменение барометрического давления в месте взлета или посадки. При вращении кремальеры одновременно переводятся стрелки прибора и шкала барометриче­ского давления.

Для согласования показаний баро­метрической шкалы с нулевым положе­нием стрелок и положением индексов в высотомере предусмотрена возмож­ность вращения при помощи кремалье­ры только одной барометрической шка­лы. Для этого надо отвернуть контргайку на кремальере, потянуть кремалье­ру на себя и с ее помощью, вращая ба­рометрическую шкалу в любую сто­рону от 670 до 790 мм рт. ст, ввести соответствующую поправку (эту опера­цию выполняет техник по прибо­рам).

Шкала 25 барометрического давле­ния от 670 до 790 мм рт. ст имеет оцифровку через 5 мм рт. ст, цена деления 1 мм рт. ст. Шкала дает возможность вносить поправ­ку в показания высотомера, когда давление в месте посадки не сов­падает с давлением у земли в момент вылета.

Шкала 3 высот отградуирована для узкой стрелки от 0 до 1000 м с оцифровкой через 100 м и с ценой деления 10 м.

Для широкой стрелки используется та же шкала от 0 до 10 000 м с оцифровкой через 1000 м и с ценой деления 100 м.

Высотомер работает следующим образом. У земли апероидные коробки находятся в наиболее сжатом состоянии и стрелки прибора показывают нуль высоты. С поднятием самолета на высоту атмос­ферное давление внутри корпуса прибора уменьшается, анероидные коробки расширяются и через передающий механизм свое движе­ние передают на стрелки, которые показывают высоту полета само­лета относительно той поверхности, давление которой установлено на барометрической шкале.

При снижении самолета атмосферное давление внутри корпуса прибора увеличивается, анероидные коробки сжимаются и возвра­щают стрелки на нулевую отметку шкалы.

Ошибки высотомера ВД-10 подразделяются на три основных вида: инструментальные, аэродинамические и методические.

Инструментальные ошибки высотомера возникают от неточности изготовления прибора, его сборки и регулировки. В про­цессе эксплуатации прибора возникают люфты, трения, нарушает­ся герметичность корпуса и т. д. Все это приводит к неправильному замеру высоты полета. Эти ошибки определяются в лаборатории, затем суммируются с аэродинамическими ошибками и заносятся в таблицу эшелонов.

Аэродинамические ошибки возникают за счет завихре­ния и уплотнения перед приемниками статического давления, встреч ного потока воздуха, что приводит к искажению статического давления. При этом давление, воспринимаемое статическими прием­никами, будет отличаться от статического (атмосферного), что при­водит к ошибкам при изменении высоты полета. Эти ошибки опреде­ляются при испытании самолета, затем суммируются с инструмен­тальными ошибками и сводятся в таблицу эшелонов.

При наборе высоты в горизонтальном полете и снижении само­лета суммарная поправка учитывается экипажем по таблице эшело­нов, установленной в кабине пилотов. При переходе на новый эше­лон полета необходимо занять новую высоту, соответствующую показанию высотомера и указанную в таблице.

Методические ошибки возникают вследствие несовпаде­ния расчетных данных, положенных в основу тарировки шкалы прибора, с фактическим состоянием атмосферы. В связи с тем, что расчет и тарировка шкалы прибора производится согласно стан­дартным данным, т. е. при p 0 = 760 мм рт. ст, температура t o = + 15° С, температурный вертикальный градиент t гр = 6,5° на 1000 м высоты, а на практике таких данных не встречается, то вы­сотомер имеет три методические ошибки, которые легко учитывают­ся в полете.

1. Ошибка, возникающая за счет изменения атмосферного дав­ления на аэродроме вылета, по маршруту и в пункте посадки. Учи­тывается перед взлетом-установкой давления аэродрома вылета; перед посадкой -установкой на барометрической шкале высотоме­ра давления аэродрома посадки; при определении высот - путем учета поправки на изменение атмосферного давления.

2. Ошибка от изменения температуры воздуха; особенно опасна при полетах на малых высотах и в горных районах в холодное вре­мя года. При температурах у земли ниже +15° С высотомер будет завышать высоту, а при температурах выше +15° С занижать по­казания высоты. Методическая температурная ошибка учитывает­ся на линейке НЛ-10М.

3. Ошибка, возникающая за счет изменения рельефа пролетаемой местности. При полете над земной поверхностью барометрические высотомеры не учитывают рельефа пролетаемой местности, а пока­зывают высоту относительно уровня той изобарической поверхности, давление которой установлено на барометрической шкале. Следо­вательно, чтобы избежать катастрофы при полете над горной мест­ностью необходимо учитывать высоту гор. Высота рельефа пролетае­мой местности определяется по карте. При расчете истинной высоты поправка на рельеф алгебраически вычитается из абсолютной вы­соты полета, а при расчете приборной высоты прибавляется.

Предполетный осмотр и пользование высотомером в полете. Пе­ред полетом необходимо осмотреть высотомеры, обращая внимание на целость стекла, окраску и крепления прибора. Убедиться в на­личии таблиц эшелонов в кассетах командира корабля и второго пилота, а также в совпадении номеров высотомеров, установленных на приборной доске, с номерами, указанными в таблице эшелонов. При осмотре убедиться, что контргайка кремальеры опломбирована. Кремальерой установить стрелки прибора на

Рис. 68. Кинематическая схема высотомера ВД-10:

1 - стрелка, показывающая высоту в километрах; 2 - стрелка, показывающая высоту в метрах; 3 - шкала; 4, 5 - индексы; 6, 7, 22 и 23 - зубчатые колеса; 8 - трибка; 9 - сектор; 10 - компенсатор второго рода; 11 - вилка; 12 - ось сектора; 13, 15 - вилки; 14, 16 - тяги; 17 - компенсатор 1-го рода; 18 - блок анероидных коробок; 19 - подвижный центр; 20 - зубчатое колесо; 21 - трибка; 24 - кремаль­ера; 25 - барометрическая шкала.

нуль высоты, и сличить показания давления на шкалах приборов с давлением на аэродроме, полученным с метеостанции.

Расхождение показаний не должно превышать более 1,5 мм рт. ст. Высотомер, имеющий расхождение, превышающее 1,5 мм рт. ст. и с расконтренной гайкой кремальеры подлежит снятию с самолета. Вылет самолета с таким высотомером не допускается. Вращая кре­мальеру, установить давление 760 мм рт. ст. При этом подвижные индексы должны установиться на нулевой отметке шкалы. Допусти­мое отклонение от нулевой отметки ± 10 м. Если подвижные индек­сы отклонились более чем на ± 10 м, прибор необходимо заменить.

Перед взлетом установить при помощи кремальеры стрелки вы­сотомеров на нуль. При этом давление аэродрома должно совпа­дать с давлением на барометрической шкале, а подвижные треугольные индексы должны показывать высоту относительно давления 760 мм рт.ст.

После взлета и пересечения высоты перехода установить на шка­лах высотомеров давление 760 мм рт. ст. По давлению 760 мм рт. ст. и таблице эшелонов набирается заданный эшелон. Высоту заданноного эшелона выдерживать согласно таблице, установленной в ка­бине экипажа.

При посадке необходимо установить давление аэродрома при пересечении высоты эшелона перехода, указываемого диспетчером, разрешающим заход на посадку.

На самолетах, вылетающих по правилам визуальных полетов (ПВП) ниже нижнего эшелона, шкалы давлений высотомеров уста­навливаются на минимальное атмосферное давление по маршруту (участку) полета, приведенному к уровню моря, при выходе само­лета из круга аэродрома взлета.

При посадке по правилам ПВП ниже нижнего эшелона необхо­димо установить давление аэродрома посадки при входе самолета в круг аэродрома посадки, а затем совершать посадку.

При пользовании высотомером перевод стрелок вручную при по­мощи кремальеры разрешается до отметки 5000 м с обязательным возвратом в исходное положение их в обратном направлении, так как из-за конструктивных особенностей прибора перевод стрелок на 10 000 м приводит к рассогласованию в показаниях барометри­ческой шкалы, стрелок и индексов.

47. Комбинированный указатель скорости КУС-73/1100

Назначение и принцип действия. Комбинированный указатель скорости КУС-730/1100 (рис. 69) предназначен для измерения при­борной скорости от 50 до 730 км/ч и истинной воздушной скорости от 400 до 1100 км/ч.

Принцип действия КУС-730/1100 основан на изме­рении скоростного напора встречного потока воздуха с автоматическим введением по­правки на плотность и сжимае­мость воздуха с поднятием на высоту.

В полете приборная ско­рость используется для пилоти­рования самолета, истинная воздушная скорость - для це­лей самолетовождения. Знание летчиком приборной скорости дает возможность правильно пилотировать самолет в воздухе, так как полет самолета ниже ми­нимальной скорости приводит к падению самолета. Увеличение ско­рости полета сверх допустимой приводит к разрушению самолета.

Показания приборной скорости используются пилотами для вы­держивания скоростей при взлете, для выдерживания заданного режима скорости по маршруту, при маневрировании и планирова­нии в районе аэродрома и при посадке.

Показание истинной воздушной скорости полета необходимо штурману для выполнения различных навигационных расчетов.

КУС-730/1100 установлены на левой и средней панелях прибор­ной доски.

Питаются указатели скорости статическим и полным давлением от приемников воздушного давления ПВД-7 системы питания анероидно-мембранных приборов.

Устройство и работа. Комбинированный указатель скорости со­стоит из герметичного корпуса, на лицевой стороне которого нане­сены две шкалы: внутренняя и внешняя.

Внутренняя шкала - шкала истинной воздушной скорости от­градуирована от 400 до 1100 км/ч с оцифровкой через 100 км/ч и ценой деления 10 км/ч. Внешняя - шкала приборной скорости - от 50 до 750 км/ч с оцифровкой через 100км/ч и ценой деления 10 км/ч.

С обратной стороны корпус имеет два штуцера: динамический, обозначенный буквой «Д», который соединяется с камерой прием­ника полного давления ПВД-7, и статический, обозначенный бук­вой «С», соединен со статической камерой приемника ПВД-7.

Для измерения приборной и истинной воздушной скорости в корпусе прибора смонтированы два механизма, работающие от од­ного чувствительного элемента - манометрической коробки.

Механизм приборной скорости (рис. 70) состоит из манометри­ческой коробки 22, имеющей две гофрированные мембраны. Внут­ренняя полость манометрической коробки соединена трубопроводом с динамическим штуцером приемника воздушного давления. При подаче давления в манометрическую коробку верхний центр 23 ко­робки перемещается и через передающий механизм воздействует на широкую стрелку 2, которая по внешней шкале показывает при­борную скорость.

Механизм истинной воздушной скорости состоит из анероидной коробки 20, тяги 19, оси 16, тяги 15, поводков 10, 11, 12, оси 28, сек­тора 27 и узкой стрелки 5, которая по внутренней шкале показыва­ет приближенную истинную воздушную скорость.

Указатель скорости работает следующим образом. При движени самолета относительно воздуха полное давление встречного по­тока воздуха, воспринимаемое приемником ПВД-7, передается во внутреннюю полость манометрической коробки, а в герметичный корпус прибора - статическое давление. Под действием скоростно­го напора (динамического давления) верхний центр 23 (см. рис. 70) манометрической коробки перемещается. Перемещение верхнего центра чувствительного элемента прибора преобразуется при помощи передаточного механизма во вращательное движение стрелки прибора, указывающей по внешней шкале приборную скорость.

Одновременно перемещение (движение) чувствительного эле­мента прибора передается на механизм истинной воздушной скорости.

Скорость вращения (при полете у земли) оси сектора 4 меха­низма приборной скорости и оси сектора 27 механизма истинной воздушной скорости одинакова. Следовательно, показания стрелок будут также одинаковы.

С изменением высоты полета изменяется статическое давление в корпусе прибора. Под действием статического давления анероидная коробка прогибается и перемещает свой верхний центр 21, ко­торый через систему передач дополнительно поворачивает узкую стрелку, указывающую приближенную истинную воздушную ско­рость. Ошибка на сжимаемость воздуха для узкой стрелки учиты­вается автоматически градуировкой шкалы. Таким образом с под­нятием на высоту показания узкой стрелки будут больше показа­ний широкой стрелки на величину плотности и сжимаемости воздуха.

Ошибки указателя скорости КУС-730/1100 подразделяются на три группы: инструментальные, аэродинамические и методические.

Инструментальные ошибки указателя скорости возни­кают по тем же причинам и аналогичны инструментальным ошиб­кам высотомера ВД-10. Они определяются в лаборатории путем сличения показаний проверяемого указателя скорости с эталонным прибором. Результаты проверки, не выходящие из пределов допус­ков, наносят на график (таблицу), который устанавливается в ка­бине самолета. Инструментальные ошибки учитываются в полете по графику или таблице.

Аэродинамические ошибки возникают вследствие ис­кажения воздушного потока перед приемниками воздушного давле­ния. Как показывает опыт, невозможно установить приемник в та­ком месте самолета, где он находился бы в неискаженном потоке воздуха. Следовательно, приемники воздушных давлений воспри­нимают скоростной напор, искаженный влиянием самолета. Вслед­ствие этого исправный указатель скорости в полете не точно изме­ряет скорость движения самолета относительно воздуха.

Аэродинамические ошибки определяются на заводе-изготовите­ле самолета и заносятся в специальный график или таблицу попра­вок. Учитываются эти ошибки в полете по специальному графику или таблице для обеих стрелок.

Методические ошибки возникают из-за несовпадения действительной плотности воздуха с расчетной, принятой при расче­те шкалы указателя скорости, а также вследствие сжимаемости встречного потока воздуха.

Шкала указателя воздушной скорости тарируется согласно стан­дартной плотности воздуха, равной 0,125 кг-с/м 4 при давлении 760 мм рт. ст. и температуре +15° С. При подъеме на высоту плот­ность воздуха уменьшается. Следовательно, на высоте скоростной напор будет меньше и прибор покажет скорость меньше действи­тельной воздушной скорости полета самолета.

Кроме того, плотность воздуха также зависит от температуры. Если температура воздуха увеличивается, то плотность воздуха уменьшается. Из сказанного следует, что при увеличении температу­ры воздуха прибор будет занижать скорость, а при температурах ниже +15° С - завышать показания воздушной скорости.

Во всех случаях, когда плотность и температура воздуха отли­чаются от расчетных данных, показания прибора не будут равны истинной воздушной скорости. Эта методическая ошибка для широ­кой стрелки учитывается на линейке НЛ-10М, а для узкой стрелки частично - с помощью анероидной коробки. Кроме того, ошибка за счет изменения плотности воздуха может быть учтена путем при­ближенного вычисления в уме.

Ошибки указателя скорости на сжимаемость встречного потока воздуха возникают вследствие сжимаемости воздуха впереди само­лета. Летящий самолет оказывает давление на воздушные массы воздуха, сжимая его. При этом плотность воздуха увеличивается, что вызывает увеличение скоростного напора и, следовательно, за­вышение показаний указателя скорости.

При полете на скоростях менее 400 км/ч ошибки на сжимаемость встречного потока воздуха незначительные и ими пренебрегают. При скоростях, больших 400 км/ч, особенно на больших высотах, ошибки достигают значительных величин и поэтому их необходимо учитывать при расчете скоростей.

Ошибки на сжимаемость встречного потока воздуха учитыва­ются по таблице только для широкой стрелки.

Предполетный осмотр и пользование указателем скорости в по­лете. Внешним осмотром необходимо убедиться, что видимых де­фектов нет, обращая внимание на целость стекла, корпуса, окраску шкалы и стрелок, а также крепления прибора к приборной доске. Краны переключения статики и динамики на горизонтальном пуль­те левого летчика и кран статики на вертикальном пульте правого летчика должны находиться в положении «Основная» и законтрены. При осмотре стрелки указателей должны быть в исходном положе­нии. Убедиться, что таблицы инструментальных ошибок находятся у рабочего- места летчиков, а также сняты заглушки с приемников статического давления и чехлы с приемников ПВД-7 и ППД-1. После чего проверить исправность электрической цепи обогрева приемников статического давления, а также приемников ПВД-7 и ППД-1.

При определении в полете истинной воздушной скорости по ши­рокой стрелке КУС-730/1100 необходимо в показание прибора вво­дить пять поправок: инструментальную, аэродинамическую, на из­менение плотности воздуха, температурную и на сжимаемость воз­духа. Инструментальную поправку определяют по таблице, которая находится в кабине экипажа. Аэродинамическую поправку берут из формуляра самолета или определяют по таблице. Поправка на изменение плотности и температуры воздуха вводится при помощи навигационной линейки НЛ-10М. Поправку на сжимаемость воздуха определяют по таблице.

Рис. 71. Приемник воздушных давлений ПВД-7

Чтобы в полете определить истинную воздушную скорость по узкой стрелке, необходимо в показание узкой стрелки ввести три поправки: температурную, инструментальную и аэродинамическую.

Если не вдаваться в детали, может показаться, что работа инструмента примитивна и не всегда корректная. На самом деле это далеко не так, ведь очень многое зависит от дополнительных условий - калибровки, настроек в самих часах. Если вы детально изучите все тонкости использования, высотомер может стать относительно надежным источником полезной информации. Конечно, я не претендую на роль эксперта в этой области, но базовые особенности хорошо описаны в инструкциях и википедии. Собрал все объяснения в одном материале на блоге любителей Casio.

GW9400-3ER и 105 метров

Основы работы высотомера - часы получают информацию о высоте над уровнем моря благодаря наличию встроенного датчика атмосферного давления. Сразу хотим подчеркнуть - высоту и атмосферное давление измеряет один датчик , по сути это одни и те же данные, только в разной интерпретации.

с функцией высотомера

Принцип действия барометрического высотомера заключается в измерении атмосферного давления. Все мы знаем, что с увеличением высоты уменьшается текущее атмосферное давление. Этот простой принцип заложен в основу работы прибора, который на самом деле измеряет не высоту а атмосферное давление. Работа высотомера в часах Casio базируется на данных “Международной стандартной атмосферы” (International Standard Atmosphere - ISA), которые предусмотрены Международной организацией гражданской авиации. На рисунке показана зависимость определенной высоты от соответствующего атмосферного давления.

Существует две разновидности представления высоты: абсолютная, которая показывает высоту над уровнем моря и относительная, которая выражает высоту между двумя разными точками. На рисунке 2. наглядно показана разница между этими типами измерений (слева – высота здания, справа – высота над уровнем моря).

Значение высоты измеряется двумя способами: встроенная процедура (над уровнем моря - по умолчанию) или на основе эталонной высоты. В первом случае часы вычисляют высоту на основе данных барометра. Во втором случае берется некий эталон высоты (с помощью карты или другого источника) и высотомер отталкивается от этого значения при дальнейших измерениях.

Предостережения

  • Часы получают данные о высоте на основе текущего атмосферного давления. При изменении давления в одном месте, данные о высоте для этого места могут различаться.
  • Данные о высоте могут быть неточными во время прыжков с парашютом, полетах на самолете, дельтаплане и т.п. (из-за резких скачков давления).

Единицы измерения

  • В зависимости от выбранного часового пояса, часы автоматически определяют единицы измерения.
  • Высота измеряется в метрах или футах.
  • Диапазон значений для высотомера - от -700 до 10000 метров (от -2300 до 32800 футов).
  • Если текущие показатели высоты выходят за рамки вышеописанных значений, на дисплее часов высвечивается пиктограмма “—-”. Данные автоматически обновляются когда показатели войдут в допустимый диапазон измерений.

О работе датчика

  • Перед использованием высотомера нужно выбрать формат отображения высоты и частоту ее обновления.
  • Первый формат отображения высоты подразумевает наличие графика в верхней части электронного циферблата. Этот график обновляется по мере обновления значений высоты.
  • Второй формат вместо графика отображает относительную высоту (разница между текущей высотой и заранее заданной)
  • Интервалов обновления высоты всего два: каждую секунду в течение первых 3 минут, затем каждые 5 секунд в течение часа; каждую секунду в течение первых 3 минут, затем каждые 2 минуты в течение следующих 12 часов.

Для корректного отображения текущей высоты датчик необходимо откалибровать . Известны случаи, когда неверная калибровка датчика пилотами самолета становилась причиной авиакатастрофы при полетах с нулевой видимостью [давно это было]. Обратите внимание, высотомер в салоне самолета будет работать некорректно, т.к. в самолете за счет постоянной циркуляции воздуха, его давление существенно отличается от давления воздуха снаружи.

Калибровка представляет собой процесс коррекции показателей датчика с условно идеальными данными другого прибора/источника.

Чтобы свести к минимуму вероятность ошибки в определении высоты, нужно задать эталонное значение высоты . Его необходимо устанавливать на основе точной информации о высоте, определенной, к примеру, с помощью специальных туристических карт или другого надежного источника.

Процесс калибровки довольно прост: в режиме высотомера зажимаем кнопку E, пока на экране не начнет мигать текущее значение высоты. С помощью кнопок A (+) и C (-) установите эталонное значение высоты с интервалом в 1м (5 футов). После этого можно выйти из режима настройки.

Для всех часов Casio процесс схожий, но если возникли какие-то вопросы или проблемы, загляните в инструкцию к своей модели (или напишите нам, мы обязательно поможем).

Теперь о частоте калибровки. Производитель калибрует все датчики после сборки часов, поэтому сразу после покупки никакая калибровка не требуется. Со временем погрешность измерения может увеличиваться, что влечет за собой неверные показатели. Если вы считаете, что данные датчика неверны или сомневаетесь в их корректности, то процесс калибровки не помешает.

Последовательность действий по измерению высоты

Итак, датчик мы откалибровали, теперь можно приступать к измерениям. Напоминаем, процесс описан для часов GW-9400 (модуль 3410). Для других моделей Casio последовательность действий может быть иной, но принцип остается тем же.

Примечание : в новых моделях часов производитель заявляет о более высокой скорости измерения и улучшенной точности.

  • Входим в режим альтиметра – датчик сработает автоматически и сразу покажет нам текущую высоту. Первые 3 минуты измерения будут происходить каждую секунду. В зависимости от выбранного ранее типа отображения получаем информацию:

  • Можно перезапустить считывание высоты в любое время, нажав кнопку С.
  • На графике изменений высоты отображается разница между предыдущим и текущим измерением.

  • График изменения высоты показывает последние 20 автоматических значений.

  • Обратите внимание, память может хранить до 40 записей о высоте включительно. Если записей будет больше, то из памяти будут удаляться самые старые значения.
  • Чтобы записать данные о высоте в память нужно в режиме альтиметра нажать и удерживать кнопку С в течение 2 секунд. На экране отобразится индикатор REC Hold. После этого отпустите кнопку С. Таким образом вы сохраните запись о текущей высоте, времени и дате создания записи.
  • Чтобы посмотреть сохраненный записи, используйте кнопки A и C.
  • В автоматическом режиме часы сохраняют данные о максимальной высоте, минимальной высоте, общем подъеме и общем снижении. Эти данные обновляются при следующих измерениях.

Вывод

Высотомер в часах касио не меряет высоту линейкой а лишь представляет данные об атмосферном давлении в другом виде. Если вы сомневаетесь в точности датчика, сравните данные часов со специализированной картой. Если информация не отличается существенно - все ок. Если отличается - нужно сделать калибровку.

P.S. Есть что добавить? Пишите в комментариях, добавим к материалу.