23.06.2020

Отрицательное влияние удобрений на почву. Как влияют удобрения на почву


Применение минеральных удобрений (даже в высоких дозах) не всегда приводит к прогнозируемому увеличению урожая.
Многочисленные исследования свидетельствуют о том, что погодные условия вегетационного периода оказывают настолько сильное влияние на развитие растений, что экстремально неблагоприятные погодные условия фактически нивелирует эффект повышения урожайности даже при высоких дозах внесения питательных веществ (Страпенянц и др., 1980; Федосеев, 1985). Коэффициенты использования питательных веществ из минеральных удобрений могут резко отличаться в зависимости от погодных условий вегетационного периода, снижаясь для всех культур в годы с недостаточным увлажнением (Юркин и др., 1978; Державин, 1992). В связи с этим, любые новые приемы повышения эффективности минеральных удобрений в районах неустойчивого земледелия заслуживают внимания.
Один из приемов увеличения эффективности использования питательных веществ из удобрений и почвы, укрепления иммунитета растений к неблагоприятным факторам среды и повышения качества получаемой продукции - использование гуминовых препаратов при возделывании сельскохозяйственных культур.
За последние 20 лет, значительно повысился интерес к гуминовым веществам, применяемым в сельском хозяйстве. Тема гуминовых удобрений не является новой ни для исследователей, ни для практиков-аграриев. Начиная с 50-х годов прошлого столетия изучалось влияние гуминовых препаратов на рост, развитие, урожай различных сельскохозяйственных культур. В настоящее время в связи с резким подорожанием минеральных удобрений гуминовые вещества широко применяются для увеличения эффективности использования питательных веществ из почвы и удобрений, повышения иммунитета растений к неблагоприятным факторам среды и повышения качества урожая получаемой продукции.
Разнообразно сырье для производства гуминовых препаратов. Это могут быть угли бурые и темные, торф, озерный и речной сапропель, вермикомпост, леонардит, а также различные органические удобрения и отходы.
Основным способом получения гуматов на сегодняшний день является технология высокотемпературного щелочного гидролиза сырья, в результате которой происходит высвобождение поверхностно-активных высокомолекулярных органических веществ различной массы, характеризующихся определенным пространственным строением и физико-химическими свойствами. Препаративная форма гуминовых удобрений может представлять собой порошок, пасту или жидкость с различными удельным весом и концентрацией действующего вещества.
Основным отличием для различных гуминовых препаратов является форма действующего компонента гуминовых и фульвокислот и (или) их солей – в водорастворимой, усвояемой или трудноусвояемой формах. Чем выше содержание органических кислот в гуминовом препарате, тем ценнее он как для индивидуального применения, так и особенно для получения комплексных удобрений с гуматами.
Различны способы применения гуминовых препаратов в растениеводстве: обработка посевного материала, некорневые подкормки, внесение водных растворов в почву.
Гуматы могут применяться как отдельно, так и в сочетании со средствами защиты растений, регуляторами роста, макро- и микроэлементами. Спектр их использования в растениеводстве чрезвычайно широк и включает практически все сельскохозяйственные культуры, производимые как в крупных аграрных предприятиях, так и в личных подсобных хозяйствах. В последнее время значительно выросло их использование на различных декоративных культурах.
Гуминовые вещества обладают комплексным действием, улучшающим состояние почвы и системы взаимодействия «почва – растения»:
- повышают подвижность усвояемого фосфора в почве и почвенных растворах, ингибируют иммобилизацию усвояемого фосфора и ретроградацию фосфора;
- кардинально улучшают баланс фосфора в почвах и фосфорное питание растений, выражающееся в увеличении доли фосфорорганических соединений, ответственных за перенос и трансформацию энергии, синтез нуклеиновых кислот;
- улучшают структуру почв, их газопроницаемость, водопроницаемость тяжелых почв;
- поддерживают органо-минеральный баланс почв, препятствуя их засолению, закислению и другим негативным процессам, приводящим к снижению или потере плодородия;
- сокращают вегетативный период за счет улучшения белкового обмена, концентрированной доставки питательных компонентов к плодовой части растений, насыщению их высокоэнергетическими соединениями (сахара, нуклеиновые кислоты и др. органические соединения), а также подавляют накопление нитратов в зеленой части растений;
- усиливают развитие корневой системы растения за счет полноценного питания и ускоренного деления клеток.
Особенно важными являются полезные свойства гуминовых компонентов для поддержания органо-минерального баланса почв при интенсивных технологиях. В статье Пола Фиксена «Концепция повышения продуктивности сельскохозяйственных культур и эффективности использования элементов питания растениями» (Фиксен, 2010) приведена ссылка на системный анализ методов оценки эффективности использования элементов питания растениями. В качестве одного из значимых факторов, влияющих на эффективность использования элементов питания, указывается интенсивность технологий возделывания сельскохозяйственных культур и связанные с ними изменения структуры и состава почвы, в частности, иммобилизация элементов питания и минерализация органического вещества. Гуминовые компоненты в сочетании с ключевыми макроэлементами, прежде всего фосфором, поддерживают плодородие почв при интенсивных технологиях.
В работе Ивановой С.Е., Логиновой И.В.,Тиндалл Т. «Фосфор: механизмы потерь из почвы и способы их снижения» (Иванова и др., 2011) химическая фиксация фосфора в почвах отмечена как один из основных факторов низкой степени использования фосфора растениями (на уровне 5 - 25% от внесенного в 1-ый год количества фосфора). Повышение степени использования фосфора растениями в год внесения имеет выраженный экологический эффект – снижение попадания фосфора с поверхностным и подземным стоком в водоемы. Сочетание органической составляющей в виде гуминовых веществ с минеральной в удобрениях препятствует химической фиксации фосфора в малорастворимые фосфаты кальция, магния, железа и алюминия и сохраняют фосфор в доступной для растений форме.
По нашему мнению, очень перспективно применение гуминовых препаратов в составе минеральных макроудобрений.
В настоящее время существует несколько способов введения гуматов в сухие минеральные удобрения:
- поверхностная обработка гранулированных промышленных удобрений, которая широко применяется при приготовлении механических тукосмесей;
- механическое введение гуматов в порошок с последующей грануляцией при малотоннажном производстве минеральных удобрений.
- введение гуматов в плав при крупнотоннажном производстве минеральных удобрений (промышленное производство).
Очень широкое распространение в России и за рубежом получило применение гуминовых препаратов для производства жидких минеральных удобрений, используемых для листовых обработок посевов.
Цель настоящей публикации - показать сравнительную эффективность гуматизированных и обычных гранулированных минеральных удобрений на зерновых культурах (озимой и яровой пшенице, ячмене) и яровом рапсе в различных почвенно-климатических зонах России.
В качестве гуминового препарата для получения гарантированных высоких результатов по агрохимической эффективности был выбран гумат натрия «Сахалинский» со следующими показателями (табл. 1 ).

Производство гумата «Сахалинский» основано на использовании бурых углей Солнцевского месторождения о. Сахалин, имеющих очень высокую концентрацию гуминовых кислот в усвояемой форме (более 80%). Щелочная вытяжка из бурых углей этого месторождения представляет собой практически полностью растворимый в воде негигроскопичный и неслеживающийся порошок темно-коричневого цвета. В состав продукта переходят также микроэлементы и цеолиты, способствующие аккумуляции питательных веществ и регулированию обменного процесса.
Кроме указанных показателей гумата натрия «Сахалинский», важным фактором его выбора в качестве гуминовой добавки было производство концентрированных форм гуминовых препаратов в промышленных количествах, высокие агрохимические показатели индивидуального применения, содержание гуминовых веществ преимущественно в водорастворимой форме и наличие жидкой формы гумата для равномерного распределения в грануле при промышленном производстве, а также государственная регистрация в качестве агрохимиката.
В 2004 г. на ОАО «Аммофос» в г. Череповец была выпущена опытная партия нового вида удобрения – азофоски (нитроаммофоски) марки 13:19:19, с добавкой гумата натрия «Сахалинский» (щелочная вытяжка из леонардита) в пульпу по технологии, разработанной в ОАО «НИУИФ». Показатели качества гуматизированной аммофоски 13:19:19 приведены в табл. 2 .

Основной задачей при проведении промышленных испытаний было обоснование оптимального способа ввода гуматной добавки «Сахалинский» с сохранением водорастворимой формы гуматов в продукте. Известно, что гуминовые соединения в кислых средах (при pH<6) переходят в формы водорастворимых гуматов (H-гуматы) с потерей их эффективности.
Ввод порошкообразного гумата «Сахалинский» в ретур при производстве комплексных удобрений обеспечил отсутствие контакта гумата с кислой средой в жидкой фазе и его нежелательных химических трансформаций. Это подтвердил последующий анализ готовых удобрений с гуматами. Ввод гумата фактически на финальной стадии технологического процесса определил сохранение достигнутой производительности технологической системы, отсутствие возвратных потоков и дополнительных выбросов. Не отмечено и ухудшения физико-химических комплексных удобрений (слеживаемость, прочность гранул, пылимость) при наличии гуминовой составляющей. Аппаратурное оформление узла ввода гумата также не представляло сложностей.
В 2004 г. в ЗАО «Сет-Орел Инвест» (Орловская область) был проведен производственный опыт с внесением гуматизированной аммофоски под ячмень. Прибавка урожая ячменя на площади 4532 га от применения гуматизированного удобрения по сравнению со стандартной аммофоской марки 13:19:19 составила 0.33 т/га (11%), содержание белка в зерне повысилось с 11 до 12.6% (табл. 3 ), что дало хозяйству дополнительную прибыль в размере 924 руб/га.

В 2004 г. в ГФУП ОПХ «Орловское» ВНИИ зернобобовых и крупяных культур (Орловская область) проводились полевые опыты по изучению влияния гуматизированной и обычной аммофоски (13:19:19) на урожай и качество яровой и озимой пшеницы.

Схема опытов:

    Контроль (без удобрений)
    N26 P38 K38 кг д.в./га
    N26 P38 K38 кг д.в./га гуматизированное
    N39 P57 K57 кг д.в./га
    N39 P57 K57 кг д.в./га гуматизированное.
Опыты с озимой пшеницей (сорт Московская-39) проводились по двум предшественникам - черный и сидеральный пар. Анализ результатов опыта с озимой пшеницей показал, что гуматизированные удобрения оказывают положительное влияние на урожайность, а также содержание белка и клейковины в зерне по сравнению с традиционным удобрением. Максимальная урожайность (3.59 т/га) наблюдалась в варианте с внесением повышенной дозы гуматизированного удобрения (N39 P57 K57). В этом же варианте получено самое высокое содержание белка и клейковины в зерне (табл. 4 ).

В опыте с яровой пшеницей (сорт Смена) максимальная урожайность 2.78 т/га наблюдалась также при внесении повышенной дозы гуматизированного удобрения. В этом же варианте наблюдалось самое высокое содержание белка и клейковины в зерне. Как и в опыте с озимой пшеницей, внесение гуматизированного удобрения статистически значимо увеличивало урожайность и содержание белка и клейковины в зерне по сравнению с внесением такой же дозы стандартного минерального удобрения. Последний работает не только как индивидуальный компонент, но и улучшает усвояемость растениями фосфора и калия, уменьшает потери азота в азотном цикле питания и в целом улучшает обмен между почвой, почвенными растворами и растениями.
Значимое улучшение качества урожая и озимой и яровой пшеницы свидетельствует о повышении эффективности минерального питания продукционной части растения.
По результатам действия гуматную добавку можно сравнить с влиянием микрокомпонентов (бор, цинк, кобальт, медь, марганец и др.). При относительно небольшом содержании (от десятых долей до 1%) гуматные добавки и микроэлементы обеспечивают практически одинаковое повышение урожайности и качества сельскохозяйственной продукции. В работе (Аристархов, 2010) изучено влияние микроэлементов на урожайность и качество зерна зерновых и зернобобовых и показано увеличение белка и клейковины на примере озимой пшеницы при основном внесении на различных типах почв. Направленное влияние микроэлементов и гуматов на продуктивную часть культур сопоставимо по получаемым результатам.
Высокие агрохимические результаты производства при минимальной доработке аппаратурной схемы крупнотоннажного производства комплексных удобрений, полученные от применения гуматизированной аммофоски (13:19:19) с гуматом натрия «Сахалинский», позволили расширить спектр гуматизированных марок комплексных удобрений с включением нитратсодержащих марок.
В 2010 г. в ОАО «Минеральные удобрения» (г. Россошь, Воронежская область) была произведена партия гуматизированной азофоски 16:16:16 (N:P 2 О 5:K 2 О) с содержанием гумата (щелочная вытяжка из леонардита) – не менее 0.3% и влаги – не более 0.7%.
Азофоска с гуматами представляла собой гранулированное органоминеральное удобрение светло-серого цвета, отличающееся от стандартного только присутствием в нем гуминовых веществ, что придавало едва заметный светло-серый оттенок новому удобрению. Азофоска с гуматами была рекомендована в качестве органоминерального удобрения для основного и «припосевного» внесения в почву и для корневых подкормок под все культуры, где возможно применение обычной азофоски.
В 2010 и 2011 гг. на опытном поле ГНУ Московский НИИСХ «Немчиновка» проводили исследования с гуматизированной азофоской производства ОАО «Минеральные удобрения» в сравнении со стандартной, а также с калийными удобрениями (хлористый калий), содержащими гуминовые кислоты (КалиГум), в сравнении с традиционным калийным удобрением KCl.
Полевые опыты проводили по общепринятой методике (Доспехов, 1985) на опытном поле Московского НИИСХ «Немчиновка».
Отличительная особенность почв опытного участка - высокое содержание фосфора (порядка 150-250 мг/кг), и среднее калия (80-120 мг/кг). Это обусловило отказ от основного внесения фосфорных удобрений. Почва дерново-подзолистая среднесуглинистая. Агрохимическая характеристика почвы перед закладкой опыта: содержание органического вещества – 3.7%, рНсол.–5.2, NH 4 – – следы, NО 3 – – 8 мг/кг, Р 2 О 5 и К 2 О (по Кирсанову) – 156 и 88 мг/кг соответственно, СаО – 1589 мг/кг, MgO – 474 мг/кг.
В опыте с азофоской и рапсом размер опытной делянки составлял 56 м 2 (14м х 4м), повторность – четырехкратная. Предпосевная обработка почвы после основного внесения удобрений – культиватором и непосредственно перед посевом - РБК (ротационной бороной-культиватором). Посев – сеялкой Амазон в оптимальные агротехнические сроки, глубина заделки семян 4-5 см - для пшеницы и 1-3 см – для рапса. Нормы высева: пшеницы – 200 кг/га, рапса – 8 кг/га.
В опыте использовали яровую пшеницу сорт МИС и яровой рапс сорт Подмосковный. Сорт МИС - высокопродуктивный среднеспелый, позволяющий стабильно получать зерно, пригодное для производства макаронных изделий. Сорт устойчив к полеганию; значительно слабее стандарта поражается бурой ржавчиной, мучнистой росой и твердой головней.
Яровой рапс Подмосковный - среднеспелый, вегетационный период 98 дней. Экологически пластичен, отличается равномерным цветением и созреванием, устойчивостью к полеганию 4.5-4.8 балла. Низкое содержание глюкозинолатов в семенах позволяет использовать жмых и шроты в рационах животных и птицы в повышенных нормах.
Урожай пшеницы убирали в фазу полной спелости зерна. Рапс скашивали на зеленый корм в фазу цветения. Опыты для яровой пшеницы и рапса заложены по одной схеме.
Анализ почвы и растений проводили согласно стандартным и общепринятым в агрохимии методам.

Схема опытов с азофоской:


    Фон (50 кг д.в. N/га в подкормку)
    Фон+азофоска основное внесение 30 кг д.в. NPK/га
    Фон+азофоска с гуматом основное внесение 30 кг д.в. NPK/га
    Фон+азофоска основное внесение 60 кг д.в. NPK/га
    Фон+азофоска с гуматом основное внесение 60 кг д.в. NPK/га
    Фон+азофоска основное внесение 90 кг д.в. NPK/га
    Фон+азофоска с гуматом основное внесение 90 кг д.в. NPK/га
Агрохимическую эффективность комплексные удобрения с гуматами продемонстрировали и в экстремально засушливых условиях 2010 г., подтвердив ключевое значение гуматов для стрессоустойчивости культур за счет активации обменных процессов при водном голодании.
В годы проведения исследований погодные условия значительно отличались от средних многолетних для Нечерноземной зоны. В 2010 году май и июнь были благоприятными для развития сельскохозяйственных культур, и у растений были заложены генеративные органы с перспективой на будущий урожай зерна порядка 7 т/га у яровой пшеницы (как в 2009 году) и 3 т/га – у рапса. Однако, как и во всем Центральном регионе РФ, в Московской области с начала июля и до уборки урожая пшеницы в начале августа наблюдалась длительная засуха. Среднесуточные температуры в этот период были превышены на 7 о С, а дневные температуры в течение длительного времени были выше 35 о С. Отдельные кратковременные осадки выпадали в виде ливневых дождей и вода стекала с поверхностным стоком и испарялась, лишь частично впитываясь в почву. Насыщение почвы влагой в кратковременные периоды дождей не превышало глубины проникновения 2-4 см. В 2011 году в первой декаде мая после посева и во время всходов растений осадков выпало почти в 4 раза меньше (4 мм) средневзвешенной многолетней нормы (15 мм).
Среднесуточная температура воздуха в этот период (13.9 о С) была значительно выше среднесуточной многолетней температуры (10.6 о С). Количество осадков и температура воздуха во 2-ую и 3-ю декады мая значительно не отличались от количества средневзвешенных осадков и среднесуточных температур.
В июне осадков выпало значительно меньше средней многолетней нормы, температура воздуха превышала среднесуточные на 2-4 о С.
Жарким и сухим был июль. Всего за вегетационный период осадков выпало на 60 мм меньше нормы, а среднесуточная температура воздуха была примерно на 2 о С выше средней многолетней. Неблагоприятные погодные условия 2010 и 2011 годов не могли не сказаться на состоянии посевов. Засуха совпала с фазой налива зерна у пшеницы, что, в конечном итоге, привело к значительному снижению урожая.
Длительная воздушная и почвенная засуха в 2010 году не дали ожидаемого эффекта от возрастающих доз азофоски. Это проявилось как на пшенице, так и на рапсе.
Дефицит влаги оказался главным препятствием в реализации заложенного почвенного плодородия, при этом урожайность пшеницы в целом была в два раза ниже, чем в аналогичном опыте 2009 года (Гармаш и др., 2011). Прибавки урожая при внесении 200, 400 и 600 кг/га азофоски (физического веса) были практически одинаковы (табл. 5 ).

Низкая урожайность пшеницы обусловлена, в основном, щуплостью зерна. Масса 1000 зерен на всех вариантах опыта равнялась 27 – 28 грамм. Данные по структуре урожая на вариантах достоверно не различалась. В массе снопа зерно составляло около 30% (при нормальных погодных условия этот показатель составляет до 50%). Коэффициент кущения равен 1.1-1.2. Масса зерна в колосе составляла 0.7-0.8 грамм.
В то же время, в вариантах опыта с гуматизированной азофоской получена достоверная прибавка урожая при увеличении доз удобрений. Это обусловлено, прежде всего, лучшим общим состоянием растений и развитием более мощной корневой системы при применении гуматов на фоне общего стресса посевов от длительной и продолжительной засухи.
Значительный эффект от применения гуматизированной азофоски проявился на начальном этапе развития растений рапса. После посева семян рапса в результате кратковременного ливня с последующими высокими температурами воздуха на поверхности почвы образовалась плотная корка. Поэтому всходы на вариантах с внесением обычной азофоски были неравномерными и сильно изреженными по сравнению с вариантами с гуматизированной азофоской, что привело к значительным различиям в урожае зеленой массы (табл. 6 ).

В опыте с калийными удобрениями площадь опытной делянки составляла – 225 м 2 (15 м х 15 м), повторность опыта – четырехкратная, расположение делянок – рендомизированное. Площадь опыта – 3600 м 2 . Опыт проведен в звене севооборота озимые зерновые – яровые зерновые - занятый пар. Предшественник яровой пшеницы – озимое тритикале.
Удобрения вносили вручную из расчета: азота – 60, калия – 120 кг д.в. на га. В качестве азотных удобрений применяли аммиачную селитру, в качестве калийных – калий хлористый и новое удобрение КалиГум. В опыте выращивали яровую пшеницу сорт Злата, рекомендованный для возделывания в Центральном регионе. Сорт раннеспелый с потенциалом продуктивности до 6.5 т/га. Устойчив к полеганию, значительно слабее стандартного сорта поражается бурой ржавчиной и мучнистой росой, на уровне стандартного сорта – септориозом. Семена до посева обрабатывали протравителем «Винцит» в рекомендуемых производителем нормах. В фазе кущения проводили подкормку посевов пшеницы аммиачной селитрой из расчета 30 кг д.в. на 1 га.

Схема опытов с калийными удобрениями:

    Контроль (без удобрений).
    N60 основное + N30 подкормка
    N60 основное + N30 подкормка + К 120 (КCl)
    N60 основное + N30 подкормка + К 120 (КалиГум)
В опытах с калийными удобрениями отмечена тенденция увеличения урожая зерна пшеницы в варианте с испытуемым удобрением КалиГум по сравнению с традиционным хлористым калием. Содержание белка в зерне при внесении гуматизированного удобрения КалиГум было выше на 1.3% по сравнению с KCl. Самое высокое содержание белка наблюдалось на вариантах с минимальным урожаем – контроле и варианте с внесением азота (N60 + N30). Данные по структуре урожая на вариантах достоверно не различалась. Масса 1000 зерен и масса зерна в колосе по вариантам были практически одинаковы и составляли 38.1-38.6 г и 0.7-0.8 г соответственно (табл. 7 ).

Таким образом, полевыми опытами достоверно доказана агрохимическая эффективность комплексных удобрений с добавками гуматов, определяемые по прибавке урожайности и содержанию белка в зерновых культурах. Для обеспечения этих результатов необходим правильный выбор гуминового препарата с высокой долей водорастворимых гуматов, его формы и места ввода в технологический процесс на финальных стадиях. Это позволяет достигать относительно небольшого содержания гуматов (0.2 - 0.5% мас.) в гуматизированных удобрениях и обеспечивать равномерное распределение гуматов по грануле. При этом важным фактором является сохранение высокой доли водорастворимой формы гуматов в гуматизированных удобрениях.
Комплексные удобрения с гуматами повышают устойчивость сельскохозяйственных культур к негативным погодно-климатическим условиям в частности, к засухе, ухудшению структуры почв. Они могут быть рекомендованы как эффективные агрохимикаты в зонах рискованного земледелия, а также при использовании интенсивных методов земледелия со съемом нескольких урожаев в год для поддержания высокого плодородия почв в частности, в расширяющихся зонах с дефицитным водным балансом и аридных зонах. Высокая агрохимическая эффективность гуматизированной аммофоски (13:19:19) определяется комплексным действием минеральной и органической частей с усилением действия питательных компонентов, прежде всего фосфорного питания растений, улучшением обмена веществ между почвой и растениями, повышением стрессоустойчивости растений.

Левин Борис Владимирович – кандидат технических наук, заместитель ген. директора, директор по технической политике АО «ФосАгро-Череповец»; e-mail: [email protected] .

Озеров Сергей Александрович – начальник управления анализа рынка и планирования продаж АО «ФосАгро-Череповец»; e-mail: [email protected] .

Гармаш Григорий Александрович - заведующий лабораторией аналитических исследований ФГБНУ «Московский НИИСХ «Немчиновка», кандидат биологических наук; e-mail: [email protected] .

Гармаш Нина Юрьевна - ученый секретарь ФГБНУ «Московский НИИСХ «Немчиновка», доктор биологических наук; e-mail: [email protected] .

Латина Наталья Валерьевна - генеральный директор ООО «Биомир 2000», директор производства ГК Сахалинские Гумат; e-mail: [email protected] .

Литература

Пол И. Фиксен Концепция повышения продуктивности сельскохозяйственных культур и эффективности использования элементов питания растениями // Питание растений: Вестник Международного института питания растений, 2010, №1. – с. 2-7.


Иванова С.Е., Логинова И.В., Танделл Т. Фосфор: механизмы потерь из почвы и способы их снижения // Питание растений: Вестник Международного института питания растений, 2011, №2. – с. 9-12.
Аристархов А.Н. и др. Действие микроудобрений на урожайность, сбор белка и качество продукции зерновых и зернобобовых культур // Агрохимия, 2010, №2. – с. 36-49.
Страпенянц Р.А., Новиков А.И., Стребков И.М., Шапиро Л.З., Кирикой Я.Т. Моделирование закономерностей действия минеральных удобрений на урожай // Вестник с.-х. науки, 1980, № 12. – с. 34-43.
Федосеев А.П. Погода и эффективность удобрений. Ленинград: Гидрометиздат, 1985. – 144 с.
Юркин С.Н., Пименов Е.А., Макаров Н.Б. Влияние почвенно-климатических условий и удобрений на расход основных элементов питания урожаем пшеницы // Агрохимия, 1978, № 8. – С. 150-158.
Державин Л.М. Применение минеральных удобрений в интенсивном земледелии. М.: Колос, 1992. – 271 с.
Гармаш Н.Ю., Гармаш Г.А., Берестов А.В., Морозова Г.Б. Микроэлементы в интенсивных технологиях производства зерновых культур //Агрохимический вестник, 2011, № 5. – С. 14-16.


Из отдельных элементов питания на формирование генеративных органов зимующих глазков винограда и на повышение морозоустойчивости растений положительное влияние оказывают калийные и фосфорные удобрения, которые способствуют более раннему созреванию винограда и быстрому завершению периода вегетации. При недостатке калия в растении наблюдается накопление растворимых форм азота, а синтез белковых веществ и накопление углеводов замедляются. Такое изменение в процессе обмена веществ у растений приводит к снижению их морозоустойчивости.
Следовательно, большое значение для повышения морозоустойчивости виноградного растения имеет режим почвенного питания. Морозоустойчивость растений повышается при обеспеченности всеми необходимыми элементами питания, в противном случае она снижается. Из-за недостатка или избытка отдельных элементов питания нарушается нормальный ход развития растений. При недостатке любого из элементов питания растения плохо ассимилируют и вследствие этого не откладывают на зиму необходимых запасов пластических веществ. Закаливание таких растений осенью проходит неудовлетворительно. Поэтому удобрение виноградников надо рассматривать как необходимый агротехнический прием, улучшающий их морозоустойчивость.
В повышении морозоустойчивости виноградных кустов большое значение имеют и другие агротехнические мероприятия: нагрузка кустов, зеленые операции, подвязка побегов и т. д. Перегрузка кустов урожаем на низком агротехническом фоне ослабляет рост побегов, ухудшает их вызревание, что также снижает их морозоустойчивость. У недостаточно нагруженных кустов рост может оказаться чрезмерно сильным и продолжительным, в результате чего общая задержка вегетации может также привести к невызреванию лозы и, следовательно, к снижению устойчивости растений к низким температурам. Таким образом, низкими температурами особенно повреждаются те растения, которые по той или иной причине оказались недостаточно подготовленными к зиме.
Исследования по влиянию режима минерального питания на морозоустойчивость виноградного растения, проведенные в условиях Армении на сорте Воскеат, показали, что кусты, которые удобряли смесью NPK, во время зимних морозов сохранились лучше, чем кусты, которые получали лишь азотное или неполное удобрение (табл. 10).

Органические и минеральные удобрения оказывают огромное влияние на почву. По сути, такая агротехническая функция как удобрение почвы является более интенсивно выраженной имитацией сложных природных процессов, происходящих в экосистеме на протяжении длительных периодов.

Человек меняет естественные принципы взаимодействия растений, животных и почвы, адаптируя технологии к максимально эффективным результатам при выращивании сельскохозяйственных культур.

Влияние удобрений на почву может быть различным — как положительным, так и отрицательным. Для того чтобы не нанести вред почве, растениям и полезным микроорганизмам, нужно соблюдать агротехнические и экологические нормы, разработанные для различных сельскохозяйственных видов удобрений.

Наиболее полезными для грунта являются натуральные удобрения. В первую очередь, это пресноводный ил. Можно вносить его в чистом виде или разбавлять компостом, либо смешивать с иными видами удобрений.

Ацидофильные растительные культуры предпочитают кислую почву. Каким образом можно изменить pH почвы в кислую сторону? Для этой цели хорошо подходит такой вид натурального удобрения как хвоя. Внесение хвои в землю может дать хороший эффект для ацидофильных растений, но отрицательно отразится на других видах, для произрастания которых требуется нейтральная или щелочная среда почвы.

Многие фруктовые деревья (в первую очередь яблони и груши) в период созревания нуждаются в железе. Таким образом, обработка фруктовых деревьев железным купоросом будет способствовать обеспечению их железом, что благоприятно отразится на урожайности, размерах и яркой окраске плодов.

Азотные удобрения следует вносить в почву с осторожностью. Дело в том, что в результате накопления нитратных солей (нитратов) в почве, многие сельскохозяйственные культуры аккумулируют в себе нитраты и становятся ядовитыми для человека и животных. Особенно актуально это для бахчевых культур.

Применение йодистых удобрений для подкормки вне корневой системы дает хороший эффект на овощных культурах и плодово-ягодных растениях (прибавляет до 40% урожайности).

Некоторые растения предпочитают щелочную почву. Кроме того, нередко возникает ситуация, когда происходит значительное загрязнение растений и почвы выхлопами автомобилей и другими отходами промышленного производства.

Это приводит к накоплению в почве тяжелых металлов, что с высокой степенью вероятности приводит к заболеваниям человека и животных. Для нейтрализации тяжелых металлов и изменении pHпочвы к щелочному можно применять известь или золу. Щелочь связывает тяжелые металлы, превращая их в соли.

Существуют и другие виды удобрений, позволяющие менять структуру, кислотность, плодородность, соленость и прочие показатели почвы. Главное — чтобы при использовании удобрений не нарушались агротехнические и экологические нормы.

Влияние минеральных удобрений на качество продукции и здоровье людей

Минудобрения способны оказывать отрицательное воздействие как на растения, так и на качество растительной продукции, а также на организмы, ее потребляющие. Основные из таких воздействий представлены в таблицах 1, 2.

При высоких дозах азотных удобрений увеличивается риск заболевании растений. Имеет место чрезмерное накопление зеленой массы, и резко возрастает вероятность полегания растений.

Многие удобрения, особенно хлорсодержащие (хлористый аммоний, хлористый калий), отрицательно действуют на животных и человека в основном через воду, куда поступает высвобождающийся хлор.

Отрицательное действие фосфорных удобрений связано в основном с содержащимися в них фтором, тяжелыми металлами и радиоактивными элементами. Фтор при его концентрации в воде более 2мг/л может способствовать разрушению эмали зубов.

Таблица 1

Воздействие минеральных удобрений на растения и качество растительной продукции (по разным источникам)

Виды удобрений

положительное

отрицательное

При высоких дозах или несвоевременных способах внесения - накопление в виде нитратов(особенно в овощах), буйный рост в ущерб устойчивости, повышенная заболеваемость, особенно грибными болезнями. Хлористый аммоний способствует накоплению хлора. Основные накопители нитратов - овощи, кукуруза, овес, табак.

Фосфорные

Снижают отрицательные воздействия азота, улучшают качество продукции, способствуют повышению устойчивости растений к болезням

При высоких дозах возможны токсикозы растений. Действуют в основном через содержащиеся в них тяжелые металлы (кадмий, мышьяк, селен), радиоактивные элементы и фтор. Основные накопители - петрушка, лук, щавель.

Калийные

Аналогично фосфорным

В основном через накопление хлора при внесении хлористого калия. При избытке калия - токсикозы. Основные накопители калия - картофель, виноград, гречиха, овощи закрытого грунта.

Таблица 2

Воздействие минеральных удобрений на животных и человека (по разным источникам)

Виды удобрений

Основные воздействия

Азотные (нитратные формы)

Нитраты (ПДК для воды 10 мг/л, для пищевых продуктов - 500 мг/день на человека) восстанавливаются в организме до нитритов, вызывающих нарушение обмена веществ, отравления, ухудшение иммунологического статуса, метгемоглобинию (кислородное голодание тканей). При взаимодействии с аминами (в желудке) образуют нитрозамины - опаснейшие канцерогены. У детей могут вызывать тахикардию, цианоз, потерю ресниц, разрыв альвеол. В животноводстве: авитаминозы уменьшение продуктивности, накопления мочевины в молоке, повышение заболеваемости, снижение плодовитости.

Фосфорные (суперфосфат и содержащийся в нем фтор, кадмий и др. тяжелые металлы)

В основном через фтор. Избыток его в питьевой воде (более 2мг/л) вызывает повреждение эмали зубов у человека, потерю эластичности кровеносных сосудов. При содержании более 8мг/л - остеохондрозные явления.

Потребление воды с содержанием хлора более 50 мг/л вызывает отравления (токсикозы) человека и животных.

Заключение

От почвы и ее плодородия зависит жизнь людей. Почву считают великой лабораторией, арсеналом, доставляющим средства производства, предмет труда, место для поселения людей. Поэтому о почве необходимо заботиться всегда, чтобы выполнить свой долг - оставить ее улучшенной последующим поколениям.

Обрабатываемые земли - результат сложных естественных процессов и труда многих поколений людей. Поэтому качество почв во многом зависит от длительности возделывания земли и культуры земледелия. Вместе с урожаем человек изымает из почвы значительное количество минеральных и органических веществ, тем самым объединяя ее. Так, при урожае картофеля в 136 ц/га почва теряет 48,4 кг азота, 19 кг фосфора и 86 кг калия. Поэтому необходимо систематически пополнять запасы этих элементов в почве внесением удобрений. Применяя необходимые севообороты, тщательно обрабатывая и удобряя почву, человек повышает ее плодородие столь значительно, что большинство современных обрабатываемых почв следует считать искусственными, созданными при участии человека.

Таким образом, в одних случаях воздействие человека на почвы приводит повышению их плодородия, в других - к ухудшению, деградации и гибели. К особо опасным последствиям влияния человека на почвы следует отнести ускоренную эрозию, загрязнение чужеродными химическими веществами, засоление, заболачивание, изъятие почв под различные сооружения (транспортные магистрали, водохранилища и др.). Ущерб, наносимый почвам в результате нерационального использования земель, принял угрожающий характер. Уменьшение площадей плодородных почв происходит во много раз быстрее, чем их образование. Особенно опасна для них ускорения эрозия.

Список используемой литературы

1. Константинов В. М. Охрана природы. - М.: Издательский центр «Академия»,2000.

2. Воронков Н. А. Экология общая, социальная, прикладнаяю. - М.:Агар, 2000.

3. Боков В. А. и др. Геоэкология. - Симферополь: Таврия, 1996.

4. Акимова Т. А., Хаскин В. В. Экология. Человек - Экономика - Биота - Среда. - М.: ЮНИТИ-ДАНА, 2001

Влияние загрязнения окружающей среды на здоровье людей

Влияние экологии на акселерацию

Химизация сельского хозяйства, проводящаяся нарастающими темпами, занимает далеко не последнее место в ряду антропогенных факторов, воздействующих на почвы и на природу в целом...

Влияния излучения на человека

Озон является аллотропной модификацией кислорода. Его молекула диамогнитна (в отличие от парамагнитной О2), имеет угловую форму, связь в молекулу является делокализованной трехцентровой...

Воздействие сельского хозяйства на окружающую среду

Геоэкологические проблемы сельского хозяйства

Для своего развития растения нуждаются в определенном количестве биогенных веществ (соединений азота, фосфора, калия и др.), обычно поглощаемых из почвы. В естественных экосистемах биогены, ассимилированные растительностью...

Кислотные дожди

Выпадение кислотных осадков на современном этапе биосферы представляет собой достаточно насущную проблему и оказывает достаточно негативное воздействие на биосферу...

Проблемы шумового загрязнения в городской экосистеме

В наши дни шум стал постоянной частью человеческой жизни, одним из самых опасных и неблагоприятных факторов, загрязняющих городскую среду и вредящих здоровью человека...

Связь экономики природопользования и агрохимии. Локальный способ применения минеральных удобрений как экономически и экологически целесообразный

Минеральные удобрения определяют качественный уровень и эффективность современного земледелия, обеспечивая получение высоких урожаев сельскохозяйственных культур и улучшение качества растениеводческой продукции. Однако...

Современный экологический кризиз

Экологические аспекты патологии многообразны. Они могут быть подразделены на аутогенные, т.е. последствия неправильного поведения самих людей, и на экогенные - техногенные и природные...

Сущность современного экологического кризиса

экологический кризис здоровье среда Экологические аспекты патологии многообразны. Они могут быть подразделены на аутогенные, т.е. последствия неправильного поведения самих людей, и на экогенные - техногенные и природные...

Экологическая безопасность человека в экосистеме

Человек в течение всей своей жизни находится под постоянным воздействием целого спектра факторов окружающей среды - от экологических до социальных...

В почве как системе происходят такие изменения, которые ведут к потере плодородия: повышается кислотность, изменяется видовой состав почвенных организмов, нарушается круговорот веществ, разрушается структура, ухудшающая другие свойства...

Экологические последствия химизации сельскохозяйственного производства

Влияние минеральных удобрений на атмосферный воздух, как и воду, связано в основном с их азотными формами. Азот минеральных удобрений поступает в воздух либо в свободном виде (в результате денитрификации)...

Экосистема дачного участка

На моём участке ядохимикаты стали использоваться только при появлении в России колорадского жука. Это вынужденная мера, так как жук поедает всю ботву картофеля и тем самым существует явная угроза остаться без урожая...

Экспертиза воздействия комбината "Североникель" на окружающую среду Кольского Заполярья

В Мончегорске, где располагаются производственные мощности комбината «Североникель», была выявлена зависимость между загрязненностью воздуха диоксидом серы и развитием болезней верхних дыхательных путей...

Природные органические удобрения различным образом воздействуют на почву: животные - оказывают большее влияние на ее химический состав, а растительные - на физические качества почвы. Однако большинство органических удобрений положительно влияют и на водно-физические, и на тепловые, и на химические свойства почвы, а также на биологическую активность. К тому же всегда есть возможность комбинировать несколько видов органических удобрений, сочетая их положительные свойства (Кружилин, 2002). Органические удобрения служат важнейшим источником питательных веществ для растений (Попов, Хохлов и др., 1988).

В условиях интенсивной химизации большое значение имеет решение вопросов регулирования физических свойств почв, так как усвоение питательных веществ растениями тесно связано с водным, воздушным и тепловым режимами почв, которые в свою очередь зависят от характера почвенной структуры (Ревут, 1964). Создание водопрочных структурных агрегатов в большей степени имеет отношение к содержанию и качественному составу гумусовых веществ. Поэтому возможность воздействия на водопрочность макроагрегатов почвы при систематическом внесении навоза и других органических удобрений представляет большой интерес для специалистов. Согласно имеющимся в литературе сведениям, органические удобрения играют основную роль в улучшении этих свойств почвы (Кудзин, Сухобрус, 1966).

Органические удобрения стабилизируют температуру почвы, значительно снижают потери почвы от эрозии и поверхностного стока в случае внесения навоза на поверхность почвы на 26%,а при запашке - на 10%.

С увеличением доз бесподстилочного навоза норма инфильтрации убывает, образовавшийся замедляющий инфильтрационный слой уменьшает общий объем крупных пор, а мелких увеличивает, в системе пор происходит отложение илистых частиц (Покудин, 1978).

Практически все органические удобрения являются полными, так как содержат азот, фосфор, калий, а также множество микроэлементов, витаминов и гормонов в доступной для растений форме. В связи с этим наибольшее применение они находят на почвах с низким потенциальным плодородием, таких как подзолистые и дерново-подзолистые почвы (Смеян, 1963).

Таким образом, установлено, что внесение навоза улучшает сложение почв, повышает водопрочность структурных агрегатов не только в слое 20 см, но и на большой глубине. Систематическое применение навоза улучшает водно-физические свойства почвы. Способность органических удобрений повышать емкость поглощения, влагоемкость и другие физико-химические свойства прямо связана с содержанием в них органического вещества. Поэтому в наибольшей степени улучшает физико-химические свойства бесподстилочный навоз (Небольсин, 1997).