28.02.2022

Парадокс брадобрея. Парадокс бертрана рассела


СОКРАЩЁННАЯ И ИЗМЕНЁННАЯ глава из работы
«Логические парадоксы. Пути решения»

Парадокс Б. Рассела «О парикмахере (цирюльнике, брадобрее)»

Бритый брадобрей или снова о парикмахере

В начале 20-го века Бертраном Расселом был открыт логический парадокс. Он сообщил о нём в своём письме к известному математику, философу и логику Готлобу Фреге – основателю современной логической семантики – когда тот «в 1902 году уже передал в печать второй том «Оснований арифметики». В письме «сообщалось о формальном противоречии в предложенном Фреге обосновании арифметики (парадокс Рассела), разрешить которое Фреге тщетно пытался до конца своей жизни. Однако именно Рассел принёс Фреге широкую известность, ибо в изложении Рассела (специальное приложение к Основаниям математики, 1903) концепция Фреге стала доступной широкому кругу читателей». Конец цитаты http://www.krugosvet.ru/articles/92/1009213/1009213a1.htm).
Не только Фреге, но и никто другой за сто с лишним лет до сегодняшнего дня не смог решить этот логический парадокс. Никто, кроме меня.

«Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса» (Ивин А. А. Искусство правильно мыслить. – М.: Просвещение. – 1998). В таком виде решение находится в другой статье: Парадокс Рассела – исходный вариант – о множествах, Но весь мир знает его в другой формулировке. Рассел «предложил следующий популярный вариант открытого им парадокса математической теории множеств.
Представим, что совет одной деревни так определил обязаннос­ти парикмахера этой деревни: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя?». (Ивин А. А. Искусство правильно мыслить. – М.: Просвещение. – 1990, c. 205 – 206, http://www.koob.ru/books/iskusstvo_pravilno_mislit.rar).

Было много искажений парадокса, а также попыток решить данное противоречие, но в основном все решения сводились к следующему.
«Если да (то есть парикмахер должен брить себя сам – моя вставка), то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, то он бу­дет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот парикмахер бреет себя в том и только в том случае, когда он не бреет себя. Что, разумеется, невозможно.

Рассуждение о парикмахере опирается на допущение, что такой парикмахер существует. Полученное противоречие означает, что это допущение ложно и нет такого жителя деревни, который брил бы всех тех и только тех её жителей, которые не бреются сами. Обязанности парикмахера не кажутся на первый взгляд проти­воречивыми, поэтому вывод, что его не может быть, звучит несколько неожиданно. Но этот вывод не является всё-таки парадок­сальным. Условие, которому должен удовлетворять деревенский бра­добрей, на самом деле внутренне противоречиво и, следовательно, невыполнимо. Подобного парикмахера не может быть в деревне по той же причине, по какой нет в ней человека, который был бы старше самого себя или который родился бы до своего рождения. Рассуждение о парикмахере может быть названо псевдопарадоксом». Конец цитаты (там же).

РЕШЕНИЕ

В 1992 году 19 декабря шла любимая многими до сих пор телеигра «Что? Где? Когда?». При счете 2:6 возникла, как это очень часто бывает, спорная, даже конфликтная ситуация. И тогда Владимир Яковлевич Ворошилов задал вопрос, который должен был принести победу или поражение знатокам. Это был вопрос о цирюльнике – парадокс Рассела. Конечно, знатоки проиграли, хотя могли выиграть. Потому что он задал несколько искажённый вариант вопроса:«Звучит вопрос: бреет ли сам себя цирюльник, если сам цирюльник бреет всех, кто не бреется сам?
Ответ знатоков: нет, не бреет.» (летопись/«Что? Где? Когда? Продюсерский центр ИГРА-ТВ», http://chgk.tvigra.ru/letopis/?19921219#cur). Им нужно было ответить:«Из информации о том, что цирюльник бреет всех, кто не бреется сам, невозможно сделать вывод о том, бреет ли он сам себя, бреет ли его кто-то другой или он вообще не бреется. Потому что нет достаточных оснований для таких выводов».
Но мне не давал покоя этот парадокс. Казалось, что ответ крутится в голове, нужно лишь «ухватить его за хвост». И мне через некоторое время это удалось.

Решение, как часто это бывает, просто до безумия. Всё рассуждение в деталях и с рассмотрением искажённых вариантов занимает несколько страниц. Я приведу лишь сокращённый вариант рассуждения.

Ответить на вопрос парадокса Рассела можно, если отнести парикмахера к какому либо классу мужчин: «бреются сами» или «не бреются сами». Но после логического анализа возможных оснований отнесения к этим классам множеств мужчин следует единственный вывод – это невозможно, потому что такого логически оправданного основания не существует. Исходя из данного вывода многие, в том числе и А. А. Ивин, пришли к заключению, что парадокс нерешаем, назвав его псевдопарадоксом. Но тогда следует и все другие парадоксы «решить» подобным образом раз и навсегда. Ведь никто же не думает, что может существовать в реальности ситуация разговора матери и крокодила, миссионера и людоедов и других. Значит, отрицание логического допущения не является решением. А решение таково:

Если невозможно отнести парикмахера ни к одному из классов «бреются сами» и «не бреются сами», значит, его нужно включить в третий класс – «НЕ БРЕЮТСЯ». И тогда парикмахер не нарушает ни одного логического условия, потому что на данный класс мужчин они не распространяются.

Все мужчины деревни

А. БРЕЮТСЯ 1 -сами, 2- не сами Б. НЕ БРЕЮТСЯ

И теперь парикмахеру суждено умереть бородатым.

Для правильного понимания данной задачи необходимо было лишь мысленно переставить частицу «не» перед глаголом «бреются» на место после него. И тогда смысл парадоксального условия задачи проявился бы, как на фотобумаге при печатании. Ведь фраза «не бреются сами» сразу же приняла вид абсолютно простой, не запутанной и понятной любому. А именно – «НЕ бреются сами» значит «бреются НЕ сами», то есть всё же бреются хотя и не собственными руками. И, таким образом, сразу же проявляется очевидная и грубая ошибка в логическом рассуждении всех тех, кто пытался решить данный парадокс. Такой тип ошибок я назвал «ложный вывод», когда делается абсолютно неверный и даже противоположный от необходимого по логике вывод («Логические парадоксы. Пути решения», глава «Ошибки рассуждения – ложный вывод», ). В данной задаче «ложный вывод» заключается в том, что фраза в логическом рассуждении должна звучать не в виде: «если парикмахер не должен брить себя сам, то будет относиться к тем, кто не бреется сам», что неверно, а в виде: «если парикмахер не должен брить себя сам, то будет относиться к тем, кто бреется не сам или НЕ БРЕЕТСЯ».

После решения «парадокса Рассела» я решил и другие известные парадоксы, применив к ним два общих постулата: 1. при подходе к решению любой проблемы необходимо чёткое понимание самой проблемы во всех деталях; 2. знание – относительное понятие («Логические парадоксы. Пути решения», глава «О принципах решения парадоксов»,

Владелец парикмахерской в одном селе повесил следующее объявление: "Брею тех и только тех жителей села, кто не бреется сам". Спрашивается, кто бреет брадобрея?

Развитие математической логики особенно активизировалось в XX нашего века в связи с развитием вычислительной техники и программирования.

Ø Определение Математическая логика - это современная форма логики, которая полностью опирается на формальные математические методы. Она изучает только умозаключения со строго определенными объектами и суждениями, для которых можно однозначно решить, истинны они или ложны.

Основным (неопределяемым) понятием математической логики является понятие «простого высказывания ». Высказывание, представляющее собой одно утверждение, принято называть простым или элементарным.

Ø Определение Высказывание - это повествовательное предложение, о котором можно сказать, что оно истинно или ложно.

Высказывания могут быть истинными И или ложными Л.

Пример : Земля - планета Солнечной системы. (Истинно); Каждый параллелограмм есть квадрат (Ложно)

Существуют высказывания, о которых нельзя говорить с уверенностью, истинны они или ложны. «Сегодня хорошая погода»(кому как)

Пример Высказывание "Идет дождь" - простое, а истинное оно или ложное зависит от того, какая погода сейчас за окном. Если действительно льет дождь, то высказывание - истинное, а если солнечно, и бесполезно ждать дождя, то высказывание "Идет дождь" будет ложным.

Пример “ ” – не высказывание (неизвестно, какие значения принимает ).

“Студент второго курса” не высказывание

Ø Определение Элементарные высказывания не могут быть выражены через другие высказывания.

Ø Определение Составные высказывания –высказывания, которые можно выразить с помощью элементарных высказываний.

Пример “Число 22 четное” – элементарное высказывание.

Существуют два основных подхода к установлению истинности высказываний: эмпирический (опытный) и логический.

При эмпирическом подходе истинность высказывания устанавливается с помощью наблюдений, измерений, проведением экспериментов.

Логический подход заключается в том, что истинность высказывания устанавливается на основе истинности других высказываний, то есть без обращения к фактам, к их содержанию, то есть формально. Такой подход основан на выявлении и использовании логических связей между высказываниями, входящими в рассуждение.

2.2 Логика высказываний

Прежде всего нужно определиться с понятиями, потому что один и тот же раздел часто называют по-разному: математическая логика, логика высказываний (предложений), символическая логика, двузначная логика, пропозициональная логика, булева алгебра...


Ø Определение Логика высказываний - раздел логики, в котором вопрос об истинности или ложности высказываний рассматривается и решается на основе изучения способа построения высказываний из элементарных (далее не разлагаемых и не анализируемых) высказываний с помощью логических операций конъюнкции ("и"), дизъюнкции ("или"), отрицания ("не"), импликации ("если..., то...") и др.

Ø Определение Исчисление высказываний – это аксиоматическая логическая система, интерпретацией которой является алгебра высказываний.

Наибольший интерес представляет построение формальной системы, которая среди всех возможных высказываний выделяет такие, которые являются логическими законами (правильно построенными рассуждениями, логическими умозаключениями, тавтологиями, общезначимыми высказываниями).

Формальные теории, не пользуясь естественным (разговорным) языком, нуждаются в собственном формальном языке, на котором записываются встречающиеся в нем выражения.

Ø Определение Формальная система, порождающая высказывания, которые являются тавтологиями и только их, называются исчислением высказываний (ИВ).

Формальная система ИВ определяется:

Какие символы лучше использовать для обозначения логических связок?

Остановимся на следующих обозначениях: отрицание, конъюнкция, дизъюнкция, импликация и эквивалентность. Обычно логические значения результатов применения связок записываются в виде таблиц (т.н. таблицы истинности).

2.3Логические связки..................................................

В естественном языке роль связок при составлении сложных предложений из простых играют следующие грамматические средства:

союзы «и», «или», «не»;

слова «если …, то», «либо … либо»,

«тогда и только тогда, когда» и др.

В логике высказываний логические связки, используемые для составления сложных высказываний, обязаны быть определены точно.

Рассмотрим логические связки (операции) над высказываниями, при которых истинностные значения составных высказываний определяются только истинностными значениями составляющих высказываний, а не их смыслом.

Широко употребительных логических связок пять.

отрицание (изображается знаком),

конъюнкция (знак ),

дизъюнкция (знак v),

импликация (знак )

эквивалентность (знак ).

Ø Определение Отрицание высказывания P - высказывание, истинное тогда и только тогда, когда высказывание P ложно.

Ø Определение Конъюнкция двух высказываний P и Q - высказывание, истинное тогда и только тогда, когда истинны оба высказывания.

Ø Определение Дизъюнкция двух высказываний P и Q - высказывание, ложное тогда и только тогда, когда оба высказывания ложны.

Ø Определение Импликация двух высказываний P и Q - высказывание, ложное тогда и только тогда, когда P - истинно, а Q - ложно. Высказывание P называется посылкой импликации, а высказывание Q - заключением импликации.

Ø Определение Эквивалентность двух высказываний P и Q - высказывание, истинное тогда и только тогда, когда истинностные значения P и Q совпадают.

Употребление слов «если...» «то...» в алгебре логики отличается от употребления их в обыденной речи, где, как правило, считаем, что, если высказывание х ложно, то высказывание «Если х , то у » вообще не имеет смысла. Кроме того, строя предложение вида «если х , то у » в обыденной речи, всегда подразумеваем, что предложение у вытекает из предложения х . Употребление слов «если, то » в математической логике не требует этого, поскольку в ней смысл высказываний не рассматривается.

2.4Логические операции

Основой цифровой техники служат три логические операции, лежащие в основе всех выводов компьютера. Это три логические операции: И, ИЛИ, НЕ, которые называют «тремя китами машинной логики».

К высказываниям можно применять известные из курса дискретной математики логические связки или логические операции. При этом получаются формулы . Формулы становятся высказываниями при подстановке всех значений букв.

Таблицы истинности основных логических операций.

Несколько переменных, связанных между собой с помощью логических операций, называют логической функцией.

Описание всякого исчисления включает в себя описание символов этого исчисления (алфавита), формул, являющихся конечными конфигурациями символов, и определение выводимых формул.

2.5 Алфавит исчисления высказываний

Алфавит исчисления высказывания состоит из символов трех категорий:

Первый из них – знак дизъюнкции или логического сложения, второй – знак конъюнкции или логического умножения, третий – знак импликации или логического следования и четвертый – знак отрицания.

Других символов исчисление высказываний не имеет

2.6 Формулы.Тавтология

Формулы исчисления высказываний представляют собой последовательности символов алфавита исчисления высказываний.

Для обозначения формул используются большие буквы латинского алфавита. Эти буквы не являются символами исчисления. Они представляют собой только условные обозначения формул.

Ø Определение Формула– правильно построенная составное высказывание:

1) Всякая буква есть формула .

2) Если , - формулы, то формулами являются также , , , , .

Очевидно, не являются формулами слова: ) (в третьем из этих слов содержится не закрытая скобка, а в четвертом – нет скобок).

Заметим, что здесь никак не конкретизируются понятия логических связок. Обычно в запись формул вводят некоторые упрощения. Например, в записи формул опускаются скобки по тем же правилам, что и в алгебре высказываний.

Ø Определение. Формула называется тавтологией , если она принимает только истинные значения при любых значениях букв.

Ø Определение Формула ложная при любых значениях букв называетсяпротиворечием

Ø Определение Формула называется выполнимой , если на некотором наборе распределения истинностных значений переменных она принимает значение И.

Ø Определение Формула называется опровержимой , если при некотором распределении истинностных значений переменных она принимает значение Л.

Пример являются формулами согласно п.2 определения.

По этой же причине будут формулами слова:

Одновременно с понятием формулы вводится понятие подформулы или части формулы.

1. Подформулой элементарной формулы является она сама.

2. Если формула имеет вид , то ее подформулами являются: она сама, формула А и все подформулы формулы А.

3. Если формула имеет вид (А*В) (здесь и в дальнейшем под символом * будем понимать любой из трех символов ), то ее подформулами являются: она сама, формулы А и В и все подформулы формул А и В.

Пример Для формулы ее подформулами будут:

- подформула нулевой глубины,

Подформулы первой глубины,

Подформулы второй глубины,

Подформулы третьей глубины,

Подформула четвертой глубины.

Таким образом, по мере “погружения вглубь структуры формулы” выделяем подформулы все большей глубины

Из курса дискретной математики известны основные логические эквивалентности (равносильности), которые являются примерами тавтологий. Все логические законы должны быть тавтологиями.

Иногда законы называются правилами вывода, которые определяют правильный вывод из посылок.

2.7Законы логики высказываний

Алгебра логики обладает коммутативными и ассоциативными законами относительно операций конъюнкции и дизъюнкции и дистрибутивным законом конъюнкции относительно дизъюнкции, эти же законы имеют место и в алгебре чисел.

Поэтому над формулами алгебры логики можно производить те же преобразования, которые проводятся в алгебре чисел (раскрытие скобок, заключение в скобки, вынесение за скобки общего множителя).

Рассмотрим основные законы логики высказываний.

1. Коммутативность:

, .

2. Ассоциативность:

3. Дистрибутивность:

4. Идемпотентность: , .

5. Закон двойного отрицания: .

6. Закон исключения третьего: .

7. Закон противоречия: .

8. Законы де Моргана:

9. Законы идемпотентности (свойства операций с логическими константами)

В алгебре логики нет показателей степеней и коэффициентов. Конъюнкция одинаковых ”сомножителей” равносильна одному из них

Здесь , и – любые буквы.

Примеры. формула тавтология.

В наиболее общей форме парадокс Бертрана Рассела выглядит так:

Пусть М - множество всех множеств, которые не содержат себя в качестве своего элемента. Вопрос: содержит ли М само себя в качестве элемента?

Если ответ «да», то, по определению М, оно не должно быть элементом М и мы получили противоречие.

Если ответ «нет» - то, по определению М, оно должно быть элементом М - вновь противоречие…

«В чём же суть противоречия? Класс иногда является, а иногда не является членом самого себя. « Класс чайных ложек, например, не является другой чайной ложкой, но классы вещей, не являющиеся чайными ложками, являются одними из вещей, которые не являются чайными ложками».

Парадокс Рассела связан с использованием понятия класса всех собственных классов. «Собственным» называется класс, не содержащий себя самого в качестве своего элемента. «Несобственным» - класс, который, по предположению, содержит себя самого в качестве своего элемента. Полагают, что таков класс всех классов. Относительно класса всех собственных классов («расселовского класса») и ставится вопрос: каков он - собственный или несобственный? Если предположить, что он собственный, то он должен быть отнесён к несобственным классам, и наоборот.

В полушутливой форме Рассел представляет этот парадокс через однотипный, так называемый парадокс «Брадобрея» во «Введении в философию математики» (1919). Деревенский брадобрей должен брить всех тех и только тех жителей своей деревни, которые не бреются сами. Должен ли он брить самого себя? Если он будет брить себя, значит, он бреется сам и не имеет права брить себя. Но если он не будет брить себя, он имеет право себя брить. Таким образом можно продемонстрировать и парадоксальность «множества всех множеств, не являющихся собственными элементами». Надо отметить, что «Брадобрей» - не «чистый парадокс», ибо из него следует только, что такого парикмахера вообще не может существовать, т. е. «принципиально не может быть найдена никакая однозначная и непротиворечивая определённость для этой совокупности, содержащая элементы, определимые только в терминах этой совокупности, а также элементы, включающие в себя или предполагающие эту совокупность». Устраняется парадокс заключением, что если некоторые предпосылки рождают противоречие, значит они неверны.

Антиномия Рассела сыграла важную роль в развитии оснований математики. Она подорвала основы теории множеств, саму новую логику, стала истинным бедствием и крушением надежд тех, кто занимался проблемами обоснования математики и логики на рубеже XIX-XX веков.

Рассел в 1903 г. не признавал открыто, что обнаружил решение парадокса. В «Предисловии» к «Принципам математики» он отмечал, что единственным оправданием для публикации работы, имеющей ряд нерешённых вопросов, было то, что это исследование давало возможность глубже проникнуть в природу классов. Как возможное решение в «Приложении В» к данной работе Рассел предлагал простую теорию типов. В дальнейшем он приходит к убеждению, что именно эта теория, развитая в систему, даёт возможность устранить парадокс».

Колесников А. С., Философия Бертрана Рассела, Л., Издательство Ленинградского университета, 1991 г., с. 84-85.

А не ее противоречивость.

Антиномия Рассела формулируется следующим образом:

Пусть K - множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K само себя в качестве элемента? Если да, то, по определению K , оно не должно быть элементом K - противоречие. Если нет - то, по определению K , оно должно быть элементом K - вновь противоречие.

Противоречие в антиномии Рассела возникает из-за использования в рассуждении понятия множества всех множеств и представления о возможности неограниченного применения законов классической логики при работе с множествами. Для преодоления этой антиномии было предложено несколько путей. Наиболее известный состоит в предъявлении для теории множеств непротиворечивой формализации , по отношению к которой являлись бы допустимыми все «действительно нужные» (в некотором смысле) способы оперирования с множествами. В рамках такой формализации утверждение о существовании множества всех множеств было бы невыводимым.

Действительно, допустим, что множество U всех множеств существует. Тогда, согласно аксиоме выделения , должно существовать и множество K , элементами которого являются те и только те множества, которые не содержат себя в качестве элемента. Однако предположение о существовании множества K приводит к антиномии Рассела. Следовательно, ввиду непротиворечивости теории , утверждение о существовании множества U невыводимо в этой теории, что и требовалось доказать.

В ходе реализации описанной программы «спасения» теории множеств было предложено несколько возможных её аксиоматизаций (теория Цермело - Френкеля ZF, теория Неймана - Бернайса - Гёделя NBG, и т. д.), однако ни для одной из этих теорий до настоящего момента не найдено доказательства непротиворечивости. Более того, как показал Гёдель, разработав ряд теорем о неполноте , такого доказательства не может существовать (в некотором смысле).

Другой реакцией на открытие парадокса Рассела явился интуиционизм Л. Э. Я. Брауэра .

Ошибочно считают, что этот парадокс демонстрирует противоречивость теории множеств Г.Кантора. Для опровержения этих взглядов Н. Вавилов приводит следующий парадокс - "Парадокс Пиглета":

Пусть n - такое целое число, которое одновременно больше и меньше нуля. Тогда n в том и только том случае является положительным, когда оно является отрицательным.

Очевидно, что из него следует лишь несуществование предположенного нами числа n , а не противоречивость теории чисел в целом - этот же метод используется в доказательствах от противного.

Структура данного парадокса идентична структуре парадокса Рассела, что позволяет делать выводы лишь о противоречивости понятия "множество всех множеств", но не теории множеств в целом.

Варианты формулировок

Существует много популярных формулировок этого парадокса. Одна из них традиционно называется парадоксом брадобрея и звучит так:

Одному деревенскому брадобрею приказали «брить всякого, кто сам не бреется, и не брить того, кто сам бреется» , как он должен поступить с собой?

Еще один вариант:

В одной стране вышел указ: «Мэры всех городов должны жить не в своем городе, а в специальном Городе мэров» , где должен жить мэр Города мэров?

И ещё один:

Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылок на самих себя. Должен ли такой каталог включать ссылку на себя?

Литература

  • Р. Курант , Г. Роббинс . Что такое математика? гл. II, § 4.5
  • Мирошниченко П.Н. Что же разрушал парадокс Рассела в системе Фреге? // Современная логика:проблемы теории,истории и применения в науке. СПб.,2000. С.512-514.
  • Катречко С.Л. Расселовский парадокс брадобрея и диалектика Платона -Аристотеля //Современная логика:проблемы теории,истории и применения в науке. СПб.,2002. С.239-242.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Парадокс брадобрея" в других словарях:

    Парадокс Рассела открытый в 1901 году Бертраном Расселом и позднее независимо переоткрытый Э. Цермело теоретико множественный парадокс, демонстрирующий противоречивость логической системы Фреге, являвшейся ранней попыткой формализации… … Википедия

    Парадокс Рассела открытая в 1903 году Бертраном Расселом и позднее независимо переоткрытая Э. Цермело теоретико множественная антиномия, демонстрирующая несовершенство языка наивной теории множеств Г. Кантора, а не ее противоречивость. Антиномия… … Википедия

    Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные… … Энциклопедия Кольера

    Уроборос «Змей, пожирающий сам себя». Самореференция (самоотносимость) явление, которое возникает в системах высказываний в тех случаях, когда некое понятие ссылается само на себя. Иначе говоря, если какое либо … Википедия

    - … Википедия

    Служебный список статей, созданный для координации работ по развитию темы. Данное предупреждение не устанавливается на информационные статьи списки и глоссари … Википедия

Информация

Год написания:

2013

Систематизация и связи

Парадокс Брадобрея встречается в различных формулировках - одна из которых (в виде загадки) звучит так:

В одном городе все мужчины бреются, причем одни из них бреются сами, а другие бреются у брадобрея. Кто бреет брадобрея?

Понятно, что каждый из ответов:

1. брадобрей бреется сам,

2. брадобрей бреется у брадобрея

приводит к противоречию:

1. если он бреется сам, то не должен бриться у брадобрея,

2. если он бреется брадобреем, то не должен бриться сам.

Парадокс апеллирует к нашему пониманию закона исключенного третьего, из которого следует, что любое множество можно строго разделить на два непересекающиеся подмножества по признаку обладания их элементов некоторым предикатом: в одно подмножество войдут те элементы, кто обладают предикатом, в другое - те, которые не обладают предикатом (или обладают его отрицанием). Подобные предикаты называются контрадикторными, и предложения, в которых одному субъекту приписываются такие предикаты, образуют логические противоречия, подчиняющиеся упомянутому закону исключенного третьего. Так мужчины города, включая брадобрея, строго делятся на два множества:

1. обладающие предикатом «бриться самому»,

2. обладающие отрицанием этого предиката, то есть не бреющиеся сами.

Также строго на два непересекающихся множества мужчины делятся и по признаку обладания предикатом «бреется у брадобрея»:

1. те, кого бреет брадобрей,

2. те, кого кто не бреет брадобрей.

При делении по предикату «бриться самому» брадобрей попадет в множество самостоятельно бреющихся, а по признаку «бреется у брадобрея» будет отнесен к тем, кого бреет брадобрей. Следовательно, если бы в условиях парадокса было предложено делить мужчин по признаку обладания каким-то одним предикатом и его отрицанием (то есть контрадикторно):

1. все мужчины в городе делятся на тех, кто бреется сам и не бреется сам или

2. все мужчины в городе делятся на тех, кто бреется у брадобрея и не бреется у брадобрея,

то при ответе на вопрос «к какому из подмножеств следует отнести брадобрея? » ни в первом, ни во втором случае никакой проблемы не возникло бы.

Парадокс же получился вследствие подмены однозначно контрадикторных предикатов - «бреется сам»/«не бреется сам» или «бреется у брадобрея»/«не бреется у брадобрея» - на псевдоконтрадикторные. Действительно, в условиях парадокса предлагается разделить всех мужчин города на два множества:

1. бреются сами и

2. бреются у брадобрея,

что явно некорректно, поскольку предикат «бреется сам» не является отрицанием предиката «бреется у брадобрея» на всем множестве мужчин деревни включая брадобрея. То есть предложенное разделение не является контрадикторным, а следовательно не может подчиняться закону исключенного третьего. Поэтому и не следует удивляться, что брадобрей оказывается одновременно и в одном, и в другом подмножествах.

Для логически строгой формулировки решения парадокса брадобрея предлагается ввести понятия абсолютной и локальной контрадикторности . Абсолютно контрадикторными следует считать такую пару предикатов, для которой предложения, образованные приписыванием их одному логическому субъекту, подчиняются закону исключенного третьего всегда и везде на любом множестве логических субъектов. К абсолютно контрадикторным, безусловно, следует отнести пару «предикат» / «его отрицание». В нашем случае абсолютно контрадикторными являются предикаты «бреется сам» / «не бреется сам» или «бреется у брадобрея» / «не бреется у брадобрея». Однако можно указать ситуации, когда закон исключенного третьего выполняется и для любых несовместимых предикатов. Например, если на столе находятся только красные и зеленые шары, то на этом множестве предложение «шар красный» и «шар зеленый» являются контрадикторными: они одновременно не могут быть истинными, и ложность одного однозначно подразумевает истинность другого. В этом случае мы можем говорить о локальной контрадикторности в пределах некоторого множества. Так, скажем, предикаты «мальчик» и «девочка» локально контрадикторны на множестве учеников класса, но не контрадикторны на множестве всех людей находящихся в школе, включая персонал. В парадоксе брадобрея предикаты «бреется сам» и «бреется у брадобрея» являются контрадикторными - локально контрадикторными - на множестве мужчин города за исключением брадобрея и не являются контрадикторными на всем множестве мужчин включая брадобрея, а следовательно, требование, чтобы брадобрей принадлежал лишь к одному из подмножеств, следует считать логически некорректным.

Ситуацию с парадоксом брадобрея можно проиллюстрировать на таком примере. Допустим, на столе находятся красные шары и зеленые кубики. Понятно, что пары предикатов «красный»/«зеленый» и «шарообразный»/«кубический» являются локально контрадикторными. Более того, на этом множестве предметов локально контрадикторными являются и пары предикатов «красный»/«кубический» и «зеленый»/«шарообразный». То есть мы можем сказать, что все предметы на столе однозначно можно разделить на два множества «красные» и «кубические» или «шарообразные» и «зеленые». Однако, как следует из определения, локальная контрадикторность выполняется лишь на строго фиксированном множестве, и если мы, к примеру, выложим на стол еще красный кубик, то на полученном множестве предметов закон исключенного третьего выполняться не будет - на вопрос «к какому из множеств - к красным или кубическим - нам следует отнести новый предмет?» мы не получим однозначного ответа.

Итак, теперь мы можем строго зафиксировать логическую природу парадокса брадобрея: в его формулировке заложена элементарная логическая ошибка - применение локально контрадикторных противоположностей за пределами множества, на котором они контрадикторны.

Для полноты рассмотрения проблемы необходимо проанализировать и другую распространенную формулировку парадокса брадобрея - в виде абсурда:

Брадобрею власти города приказали брить всех, кто сам не бреется, и не брить того, кто бреется сам. Должен ли брадобрей брить себя?

В ней парадоксальность ситуации подчеркивается невозможностью выполнить приказ: если брадобрея отнести к тем, кто не бреется сам, то он должен себя брить, а если он будет бриться сам, то он не должен себя брить. Хотя на первый взгляд парадокс в данной формулировке, вроде, и не связан с подменой абсолютной контрадикторности на локальную (деление идет по предикатам «бреется сам»/«не бреется сам»), но при детальном рассмотрении становится очевидным, что мы, как и в случае с парадоксом-загадкой, имеем дело с неоднозначностью применения закона исключенного третьего. Нам предлагается два варианта разделения: с позиции отдающего приказ деление производится по предикату «бреется сам», а с позиции брадобрея разделение должно осуществляться по предикату «бреет брадобрей». И понятно, что эти разделения совпадают только на множестве всех мужчин города за исключением брадобрея - можно констатировать локальную контрадикторность. А вот при добавлении к мужчинам брадобрея однозначность пропадает: при одном разделении он относится к одному подмножеству, а при другом - к другому. То есть мы опять имеем дело с неоднозначностью контрадикторного деления, с нарушением закона исключенного третьего.

В заключение хотелось бы отметить, что парадокс брадобрея не связан, как это принято считать, с теорией множеств, хотя и был впервые сформулирован Расселом в качестве иллюстрации к так называемому парадоксу «множества всех множеств». Действительно, странно было бы мыслить брадобрея как множество, включающее или не включающее в себя других мужчин города. Гораздо осмысленнее выглядит заключение, что парадокс Рассела, который звучит так:

Пусть К — множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли К само себя в качестве элемента? Если да, то, по определению К, оно не должно быть элементом К — противоречие. Если нет — то, по определению К, оно должно быть элементом К — вновь противоречие.

имеет ту же логическую природу, что и парадокс брадобрея - нарушение контрадикторности деления на подмножества. Если мы рассмотрим все множества за исключением самого множества К, то предикаты «содержит себя в качестве элемента» и «входит в множество К» будут однозначно контрадикторными (локально контрадикторными): из истинности предложения «множество содержит себя в качестве элемента» однозначно следует ложность «множество не входит в множество К» и наоборот. И понятно, что эта контрадикторность нарушается при рассмотрении всех множеств включая К.

Итак, мы безусловно можем и должны говорить, что парадокс брадобрея иллюстрирует парадокс Рассела, но именно и только как общелогический парадокс, связанный с нарушением закона исключенного третьего, а не как специальный парадокс теории множеств.