21.09.2019

Создатель теории химического строения органических веществ. Логика теории строения органических веществ


Первой возникла в начале XIX в. теория радикалов (Ж. Гей-Люссак, Ф. Велер, Ю. Либих). Радикалами были названы группы атомов, переходящие без изменения при химических реакциях из одного соединения в другое. Такое понятие о радикалах сохранилось, но большинство других положений теории радикалов оказались неправильными.

Согласно теории типов (Ш. Жерар) все органические вещества можно разделить на типы, соответс­твующие определенным неорганическим веществам. Например, спирты R-OH и простые эфиры R-O-R рассматривались как представители типа воды H-OH, в которой атомы водорода замещены радикалами. Теория типов создала классификацию органических веществ, некоторые принципы которой применяются в настоящее время.

Современная теория строения органических соединений создана выдающимся русским учёным А.М. Бутлеровым.

Основные положения теории строения органических соединений а.М. Бутлерова

1. Атомы в молекуле располагаются в определенной последовательности согласно их валентности. Валентность атома углерода в органических соединениях равна четырем.

2. Свойства веществ зависят не только от того, какие атомы и в каких количествах входят в состав молекулы, но и от того, в каком порядке они соединены между собой.

3. Атомы или группы атомов, входящих в состав молекулы, взаимно влияют друг на друга, от чего зависят химическая активность и реакционная способность молекул.

4. Изучение свойств веществ позволяет определить их химичес­кое строение.

Взаимное влияние соседних атомов в молекулах является важнейшим свойством органических соединений. Это влияние передается или по цепи простых связей или по цепи сопряженных (чередующихся) простых и двойных связей.

Классификация органических соединений основана на анализе двух аспектов строения молекул – строения углеродного скелета и наличия функциональных групп.

Органические соединения

Углеводороды Гетероциклические соединения

Предель- Непре- Арома-

ные дельные тические

Алифатические Карбоциклические

Предельные Непредельные Предельные Непредельные Ароматические

(Алканы) (Циклоалканы) (Арены)

С п Н 2 п +2 С п Н 2 п С п Н 2 п -6

алкены полиены и алкины

С п Н 2 п полиины С п Н 2 п -2

Рис. 1. Классификация органических соединений по строению углеродного скелета

Классы производных углеводородов по наличию функциональных групп:

Галогенопроизводные R–Гал: СН 3 СН 2 Cl (хлорэтан), С 6 Н 5 Br (бромбензол);

Спирты и фенолы R–ОН: СН 3 СН 2 ОН (этанол), С 6 Н 5 ОН (фенол);

Тиолы R–SH: СН 3 СН 2 SН (этантиол), С 6 Н 5 SН (тиофенол);

Эфиры простые R–О–R: СН 3 СН 2 –О–СН 2 СН 3 (диэтиловый эфир),

сложные R–СО–О–R: СН 3 СН 2 СООСН 2 СН 3 (этиловый эфир уксусной кислоты);

Карбонильные соединения: альдегиды R–СНО:

кетоны R–СО–R: СН 3 СОСН 3 (пропанон), С 6 Н 5 СОСН 3 (метилфенилкетон);

Карбоновые кислоты R-СООН: (уксусная кислота), (бензойная кислота)

Сульфокислоты R–SО 3 Н: СН 3 SО 3 Н (метансульфокислота), С 6 Н 5 SО 3 Н (бензолсульфокислота)

Амины R–NH 2: СН 3 СН 2 NH 2 (этиламин), СН 3 NHСН 3 (диметиламин), С 6 Н 5 NH 2 (анилин);

Нитросоединения R–NO 2 СН 3 СН 2 NО 2 (нитроэтан), С 6 Н 5 NО 2 (нитробензол);

Металлорганические (элементорганические) соединения: СН 3 СН 2 Nа (этилнатрий).

Ряд сходных по строению соединений, обладающих близ­кими химическими свойствами, в котором отдельные члены ряда отли­чаются друг от друга лишь количеством групп -СН 2 -, называется гомологическим рядом, а группа -СН 2 - гомологической разностью. У членов гомологического ряда подавляющее большинство реакций протекает одинаково (исключение составляют только первые члены рядов). Следовательно, зная химические реак­ции лишь одного члена ряда, можно с большой степенью вероятности утверждать, что такого же типа превращения протекают и с осталь­ными членами гомологического ряда.

Для любого гомологического ряда может быть выведена общая формула, отражающая соотношение между атомами углерода и водо­рода у членов этого ряда; такая формула называется общей формулой гомологического ряда. Так, С п Н 2 п +2 – формула алканов, С п Н 2 п +1 ОН – алифатических одноатомных спиртов.

Номенклатура органических соединений: тривиальная, рациональная и систематическая номенклатура. Тривиальная номенклатура представляет собой совокупность исторически сложившихся названий. Так, по названию сразу понятно, откуда были выделены яблочная, янтарная или лимонная кислота, каким способом была получена пировиноградная кислота (пиролиз виноградной кислоты), знатоки греческого языка легко догадаются, что уксусная кислота – это что-то кислое, а глицерин – сладкое. По мере синтеза новых органических соединений и развития теории их строения создавались другие номенклатуры, отражающие строение соединения (его принадлежность к определённому классу).

Рациональная номенклатура строит название соединения на основании структуры более простого соединения (первого члена гомологического ряда). СН 3 ОН – карбинол, СН 3 СН 2 ОН – метилкарбинол, СН 3 СН(ОН) СН 3 – диметилкарбинол и т.д.

Номенклатура ИЮПАК (систематическая номенклатура). По номенклатуре ИЮПАК (международный союз по теоретической и прикладной химии), названия углеводородов и их функциональных производных базируются на названии соответствующего углеводорода с добавлением префиксов и суффиксов, присущих данному гомологическому ряду.

Чтобы правильно (и однозначно) назвать органическое соединение по систематической номенклатуре, надо:

1) выбрать в качестве основного углеродного скелета наиболее длинную последовательность углеродных атомов (родоначальную структуру) и дать её название, обращая внимание на степень ненасыщенности соединения;

2) выявить все имеющиеся в соединении функциональные группы;

3) установить, какая группа является старшей (см. таблицу), название этой группы отражается в названии соединения в виде суфикса и его ставят в конце названия соединения; все остальные группы дают в названии в виде приставок;

4) пронумеровать углеродные атомы основной цепи, придавая старшей группе наименьший из номеров;

5) перечислить приставки в алфавитном порядке (при этом умножающие приставки ди-, три-, тетра- и т.д. не учитываются);

6) составить полное название соединения.

Класс соединений

Формула функциональной группы

Суффикс или окончание

Карбоновые кислоты

Карбокси-

Овая кислота

Сульфокислоты

Сульфоновая кислота

Альдегиды

Гидрокси-

Меркапто-

С≡≡С

Галогенопроизводные

Br, I, F, Cl

Бром-, иод-, фтор-, хлор-

бромид, -иодид, -фторид, -хлорид

Нитросоединения

При этом необходимо помнить:

В названиях спиртов, альдегидов, кетонов, карбоновых кислот, амидов, нитрилов, галогенангидридов суффикс, определяющий класс, следует за суффиксом степени ненасыщенности: например, 2-бутеналь;

Соединения, содержащие другие функциональные группы, называются как производные углеводородов. Названия этих функциональных групп ставятся в качестве приставок перед названием родоначального углеводорода: например, 1-хлорпропан.

Названия кислотных функциональных групп, таких, как группа сульфокислоты или фосфиновой кислоты, помещают после названия углеводородного скелета: например, бензолсульфокислота.

Производные альдегидов и кетонов часто называют по имени исходного карбонильного соединения.

Эфиры карбоновых кислот называются как производные родоначальных кислот. Окончание –овая кислота заменяется на –оат: например, метилпропионат – метиловый эфир пропановой кислоты.

Для того чтобы обозначить, что заместитель связан с атомом азота родоначальной структуры, используют прописную букву N перед названием заместителя: N-метиланилин.

Т.е. начинать надо с названия родоначальной структуры, для чего абсолютно необходимо знать наизусть названия первых 10 членов гомологического ряда алканов (метан, этан, пропан, бутан, пентан, гексан, гептан, октан, нонан, декан). Также надо знать названия образующихся из них радикалов – при этом окончание –ан меняется на –ил.

Рассмотрим соединение, входящее в состав препаратов, применяемых для лечения заболеваний глаз:

СН 3 – С(СН 3) = СН – СН 2 – СН 2 – С(СН 3) = СН – СНО

Основная родоначальная структура – цепь из 8 атомов углерода, включающая альдегидную группу и обе двойные связи. Восемь атомов углерода – октан. Но есть 2 двойные связи – между вторым и третьим атомами и между шестым и седьмым. Одна двойная связь – окончание –ан надо заместить на –ен, двойных связей 2, значит на –диен, т.е. октадиен, а в начале указываем их положение, называя атомы с меньшими номерами – 2,6-октадиен. С родоначальной структурой и непредельностью разобрались.

Но в соединении есть альдегидная группа, это не углеводород, а альдегид, поэтому добавляем суффикс –аль, без номера, он всегда первый – 2,6-октадиеналь.

Ещё 2 заместителя – метильные радикалы у 3-го и 7-го атомов. Значит, в итоге получим: 3,7-диметил - 2,6-октадиеналь.

Химия - это наука, которая дает нам все то разнообразие материалов и предметов быта, которым мы, не задумываясь, пользуемся каждый день. Но чтобы прийти к открытию такого многообразия соединений, которое известно сегодня, многим химикам пришлось пройти сложный научный путь.

Огромный труд, многочисленные удачные и безуспешные эксперименты, колоссальная теоретическая база знаний - все это привело к формированию различных областей промышленной химии, позволило синтезировать и использовать современные материалы: резины, пластики, пластмассы, смолы, сплавы, различные стекла, силиконы и так далее.

Одним из самых известных, заслуженных ученых-химиков, внесших неоценимый вклад в развитие именно органической химии, был русский человек Бутлеров А. М. Его труды, заслуги и результаты работ мы и рассмотрим кратко в данной статье.

Краткая биография

Дата рождения ученого - сентябрь 1828 года, число в разных источниках неодинаковое. Он был сыном подполковника Михаила Бутлерова, мать потерял достаточно рано. Все детство прожил в родовом имении деда, в деревне Подлесная Шентала (ныне район республики Татарстан).

Учился в разных местах: сначала в закрытой частной школе, затем в гимназии. Позже поступил в Казанский университет на отделение физики и математики. Однако несмотря на это больше всего интересовался химией. Будущий автор теории строения органических соединений остался по окончании учебы на месте в качестве преподавателя.

1851 год - время защиты первой диссертационной работы ученого по теме "Окисление органических соединений". После блестящего выступления ему предоставили возможность управления всей химией в своем университете.

Скончался ученый в 1886 году там, где провел детство, в родовом имении деда. В фамильной местной часовне он и был захоронен.

Вклад ученого в развитие химических знаний

Теория строения органических соединений Бутлерова - это, безусловно, его основной труд. Однако не единственный. Именно этот ученый первым создал русскую школу химиков.

Причем из ее стен вышли такие ученые, которые в дальнейшем имели большой вес в развитии всей науки. Это следующие люди:

  • Марковников;
  • Зайцев;
  • Кондаков;
  • Фаворский;
  • Коновалов;
  • Львов и другие.

Работы по органической химии

Таких трудов можно назвать множество. Ведь Бутлеров практически все свободное время проводил в лаборатории своего университета, осуществляя различные эксперименты, делая выводы и заключения. Именно так и родилась теория органических соединений.

Есть несколько особенно емких работ ученого:

  • им был создан доклад на конференцию на тему "О химическом строении вещества";
  • диссертационный труд "Об эфирных маслах";
  • первая научная работа "Окисление органических соединений".

Перед ее формулировкой и созданием автор теории строения органических соединений долго изучал работы других ученых из разных стран, исследовал их труды, в том числе и экспериментальные. Только потом, обобщив и систематизировав полученные знания, он отразил все выводы в положениях своей именной теории.

Теория строения органических соединений А. М. Бутлерова

XIX век знаменуется бурным развитием практически всех наук, в том числе и химии. В частности, продолжают копиться обширные открытия по углероду и его соединениям, поражают всех своим многообразием. Однако никто не осмеливается систематизировать и упорядочить весь этот фактический материал, привести к общему знаменателю и выявить единые закономерности, на которых все построено.

Первым это сделал Бутлеров А. М. Именно ему принадлежит гениальная теория химического строения органических соединений, о положениях которой он рассказал массово на немецкой конференции химиков. Это стало началом новой эпохи в развитии науки, органическая химия встала на

Сам ученый шел к этому постепенно. Он провел множество опытов и предсказал существование веществ с заданными свойствами, открыл некоторые типы реакций и увидел за ними будущее. Много изучал труды своих коллег и их открытия. Только на фоне этого путем тщательного и кропотливого труда ему удалось-таки создать свой шедевр. И теперь теория строения органических соединений в данном - практически то же самое, что и периодическая система в неорганической.

Открытия ученого перед созданием теории

Какие были сделаны открытия и даны теоретические обоснования ученым перед тем, как появилась теория строения органических соединений А. М. Бутлерова?

  1. Отечественный гений первым синтезировал такие органические вещества, как уротропин, формальдегид, йодистый метилен и другие.
  2. Синтезировал из неорганики сахароподобное вещество (третичный спирт), тем самым нанеся очередной удар по теории витализма.
  3. Предсказал будущее за реакциями полимеризации, назвав их лучшими и перспективными.
  4. Изомерия объяснена была впервые только им.

Конечно, это только основные вехи его работ. На самом деле, многолетний кропотливый труд ученого можно описывать долго. Однако самой значимой на сегодня стала все-таки теория строения органических соединений, о положениях которой и поговорим дальше.

Первое положение теории

В 1861 году великий русский ученый на съезде химиков в городе Шпейере делится с коллегами своими взглядами на причины строения и многообразия органических соединений, выражая все это в форме положений теории.

Самый первый пункт следующий: все атомы в пределах одной молекулы соединены в строгой последовательности, которая определяется их валентностью. При этом атом углерода проявляет показатель валентности, равный четырем. Кислород имеет значение данного показателя, равное двум, водород - единице.

Подобную особенность он предложил называть химическим Позже были приняты обозначения выражения его на бумаге при помощи графических полных структурных, сокращенных и молекулярных формул.

Сюда же относится и явление соединения углеродных частиц друг с другом в бесконечные цепи разного строения (линейные, циклические, разветвленные).

В общем, теория строения органических соединений Бутлерова своим первым положением определила значимость валентности и единой формулы для каждого соединения, отражающей свойства и поведение вещества во время реакций.

Второе положение теории

В данном пункте было дано объяснение многообразию органических соединений в мире. Опираясь на соединения углеродов в цепи, ученый высказал мысль о том, что в мире присутствуют неодинаковые соединения, имеющие различные свойства, но при этом совершенно идентичные по молекулярному составу. Другими словами, существует явление изомерии.

Этим положением теория строения органических соединений А. М. Бутлерова не просто пояснила суть изомеров и изомерии, но и сам ученый практическим опытным путем все подтвердил.

Так, например, он синтезировал изомер бутана - изобутан. Затем предсказал для пентана существование уже не одного, а трех изомеров, исходя из строения соединения. И синтезировал их все, доказав свою правоту.

Раскрытие третьего положения

Следующий пункт теории говорит о том, что все атомы и молекулы в пределах одного соединения способны влиять на свойства друг на друга. От этого и будет зависеть характер поведения вещества в реакциях разных типов, проявляемые химические и другие свойства.

Таким образом, на основании этого положения выделяют несколько отличающихся видом и строением функциональной определяющей группы.

Теория строения органических соединений А. М. Бутлерова кратко излагается практически во всех учебных пособиях по органической химии. Ведь именно она - основа данного раздела, объяснение всех закономерностей, на которых построены молекулы.

Значение теории для современности

Безусловно, оно велико. Данная теория позволила:

  1. объединить и систематизировать весь фактический материал, накопившийся к моменту ее создания;
  2. объяснить закономерности строения, свойств различных соединений;
  3. дать полное пояснение причинам такого большого многообразия соединений в химии;
  4. дала старт для многочисленных синтезов новых веществ, базирующихся на положениях теории;
  5. позволила продвинуться взглядам, развиться атомно-молекулярному учению.

Поэтому сказать, что автор теории строения органических соединений, фото которого можно увидеть ниже, сделал многое,- это не сказать ничего. Бутлерова по праву можно считать отцом органической химии, родоначальником ее теоретических основ.

Его научное видение мира, гениальность мышления, способность предвидеть результат сыграли свою роль в конечном счете. Этот человек обладал колоссальной работоспособностью, терпением и неустанно экспериментировал, синтезировал, тренировался. Ошибался, но всегда извлекал урок и делал правильные перспективные выводы.

Только такой набор качеств и деловая хватка, упорство позволили добиться желаемого эффекта.

Изучение органической химии в школе

В курсе среднего образования на изучение основ органики отводится не так много времени. Всего одна четверть 9 класса и весь год 10 ступени (по программе Габриэляна О. С.). Однако этого времени достаточно, чтобы ребята смогли изучить все основные классы соединений, особенности их строения и номенклатуры, практическую значимость.

Основа же для начала освоения курса - теория строения органических соединений А. М. Бутлерова. 10 класс посвящается полному рассмотрению ее положений, а в дальнейшем - теоретическому и практическому подтверждению их при изучении каждого класса веществ.

Крупнейшим событием в развитии органической химии было создание в 1961 г. великим русским ученым А.М. Бутлеровым теории химического строения органических соединений.

До А.М. Бутлерова считалось невозможным познать строение молекулы, т. е. порядок химической связи между атомами. Многие ученые даже отрицали реальность атомов и молекул.

А.М. Бутлеров опроверг это мнение. Он исходил из правильных материалистических и философских представлений о реальности существования атомов и молекул, о возможности познания химической связи атомов в молекуле. Он показал, что строение молекулы можно установить опытным путем, изучая химические превращения вещества. И наоборот, зная строение молекулы, можно вывести химические свойства соединения.

Теория химического строения объясняет многообразие органических соединений. Оно обусловлено способностью четырехвалентного углерода образовывать углеродные цепи и кольца, соединяться с атомами других элементов и наличием изомерии химического строения органических соединений. Эта теория заложила научные основы органической химии и объяснила ее важнейшие закономерности. Основные принципы своей теории А.М. Бутлеров изложил в докладе «О теории химического строения».

Основные положения теории строения сводятся к следующему:

1) в молекулах атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью. Порядок связи атомов называется химическим строением;

2) свойства вещества зависят не только от того, какие атомы и в каком количестве входят в состав его молекулы, но и от того, в каком порядке они соединены между собой, т. е. от химического строения молекулы;

3) атомы или группы атомов, образовавшие молекулу, взаимно влияют друг на друга.

В теории химического строения большое внимание уделяется взаимному влиянию атомов и групп атомов в молекуле.

Химические формулы, в которых изображен порядок соединения атомов в молекулах, называются структурными формулами или формулами строения.

Значение теории химического строения А.М. Бутлерова:

1) является важнейшей частью теоретического фундамента органической химии;

2) по значимости ее можно сопоставить с Периодической системой элементов Д.И. Менделеева;

3) она дала возможность систематизировать огромный практический материал;

4) дала возможность заранее предсказать существование новых веществ, а также указать пути их получения.

Теория химического строения служит руководящей основой во всех исследованиях по органической химии.

5. Изомерия. Электронное строение атомов элементов малых периодов.Химическая связь

Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.

Изомеры – это вещества, которые имеют одинаковый состав и одинаковую молярную массу, но различное строение молекул, а потому обладающие разными свойствами.

Научное значение теории химического строения:

1) углубляет представления о веществе;

2) указывает путь к познанию внутреннего строения молекул;

3) дает возможность понять накопленные в химии факты; предсказать существование новых веществ и найти пути их синтеза.

Всем этим теория в огромной степени способствовала дальнейшему развитию органической химии и химической промышленности.

Немецкий ученый А. Кекуле высказывал мысль о соединении атомов углерода друг с другом в цепи.

Учение об электронном строении атомов.

Особенности учения об электронном строении атомов: 1) позволило понять природу химической связи атомов; 2) выяснить сущность взаимного влияния атомов.

Состояние электронов в атомах и строение электронных оболочек.

Электронные облака – это области наибольшей вероятности пребывания электрона, которые различаются по своей форме, размерам, направленности в пространстве.

В атоме водорода единственный электрон при своем движении образует отрицательно заряженное облако сферической (шаровидной) формы.

S-электроны – это электроны, образующие сферическое облако.

В атоме водорода имеется один s-электрон.

В атоме гелия – два s-электрона.

Особенности атома гелия: 1) облака одинаковой сферической формы; 2) наибольшая плотность одинаково удалена от ядра; 3) электронные облака совмещаются; 4) образуют общее двухэлектронное облако.

Особенности атома лития: 1) имеет два электронных слоя; 2) имеет облако сферической формы, но по размерам значительно превосходит внутреннее двухэлектронное облако; 3) электрон второго слоя слабее притягивается к ядру, чем первые два; 4) легко захватывается другими атомами в окислительно-восстановительных реакциях; 5) имеет s-электрон.

Особенности атома бериллия: 1) четвертый электрон – s-электрон; 2) сферическое облако совмещается с облаком третьего электрона; 3) имеются два спаренных s-электрона во внутреннем слое и два спаренных s-электрона в наружном.

Чем больше перекрываются электронные облака при соединении атомов, тем больше выделяется энергии и тем прочнее химическая связь.

Для приготовления пищи, красителей, одежды, лекарств человек издавна научился применять различные вещества. С течением времени накопилось достаточное количество сведений о свойствах тех или иных веществ, что позволило усовершенствовать способы их получения, переработки и т.д. И оказалось, что многие минеральные (неорганические вещества) можно получить непосредственно.

Но некоторые используемые человеком вещества не были им синтезированы, потому что их получали из живых организмов или растений. Эти вещества назвали органическими. Органические вещества не удавалось синтезировать в лаборатории. В начале ХIХ века активно развивалось такое учение как витализм (vita – жизнь), согласно которому органические вещества возникают только благодаря «жизненной силе» и создать их «искусственным путём» невозможно.

Но шло время и наука развивалась, появились новые факты об органических веществах, которые шли вразрез с существовавшей теорией виталистов.

В 1824 году немецкий учёный Ф. Вёлер впервые в истории химической науки синтезировал щавелевую кислоту органическое вещество из неорганических веществ (дициана и воды):

(CN) 2 + 4H 2 O → COOH - COOH + 2NH 3

В 1828 Вёллер нагрел циановокислый натрий с серлым аммонием и синтезировал мочевину – продукт жизнедеятельности животных организмов:

NaOCN + (NH 4) 2 SO 4 → NH 4 OCN → NH 2 OCNH 2

Эти открытия сыграли важную роль в развитии науки вообще, а химии в особенности. Учёные-химики стали постепенно отходить от виталистического учения, а принцип деления веществ на органические и неорганические обнаружил свою несостоятельность.

В настоящее время вещества по-прежнему делят на органические и неорганические, но критерий разделения уже немного другой.

Органическими называют вещества , содержащие в своём составе углерод, их ещё называют соединениями углерода. Таких соединений около 3 миллионов, остальных же соединений около 300 тысяч.

Вещества, в состав которых углерод не входит, называют неорганическим и. Но есть исключения из общей классификации: существует ряд соединений, в состав которых входит углерод, но они относятся к неорганическим веществам (окись и двуокись углерода, сероуглерод, угольная кислота и её соли). Все они по составу и свойствам они сходны с неорганическими соединениями.

В ходе изучения органических веществ появились новые сложности: на основании теорий о неорганических веществах нельзя раскрыть закономерности строения органических соединений, объяснить валентность углерода. Углерод в разных соединениях имел различную валентность.

В 1861 году русский ученый А.М. Бутлеров впервые синтезом получил сахаристое вещество.

При изучении углеводородов, А.М. Бутлеров понял, что они представляют собой совершенно особый класс химических веществ. Анализируя их строение и свойства, ученый выявил несколько закономерностей. Они и легла в основу созданной им теории химического строения.

1. Молекула любого органического вещества не является беспорядочной, атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Углерод в органических соединениях всегда четырёхвалентен.

2. Последовательность межатомных связей в молекуле называется еехимическим строениеми отражается одной структурной формулой (формулой строения).

3. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

4. Свойства веществ зависят не только от состава молекул вещества, но от их химического строения (последовательности соединения атомов элементов).

5. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы предвидеть свойства.

6. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Данная теория стала научным фундаментом органической химии и ускорила её развитие. Опираясь на положения теории, А.М. Бутлеров описал и объяснил явление изомерии , предсказал существование различных изомеров и впервые получил некоторые из них.

Рассмотрим химическое строение этана C 2 H 6 . Обозначив валентность элементов чёрточками, изобразим молекулу этана в порядке соединения атомов, то есть напишем нё структурную формулу. Согласно теории А.М. Бутлерова, она будет иметь следующий вид:

Атомы водорода и углерода связаны в одну частицу, валентность водорода равна единице, а углерода четырём. Два атома углерода соединены между собой связью углерод углерод (С С). Способность углерода образовывать С С-связь понятна, исходя из химических свойств углерода. На внешнем электронном слое у атома углерода четыре электрона, способность отдавать электроны такая же, как и присоединять недостающие. Поэтому углерод чаще всего образует соединения с ковалентной связью, то есть за счёт образования электронных пар с другими атомами, в том числе и атомов углерода друг с другом.

Это одна из причин многообразия органических соединений.

Соединения, которые имеют один и тот же состав, но различное строение, называются изомерами. Явление изомерии одна из причин многообразия органических соединений

Остались вопросы? Хотите знать больше о теории строения органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Теория А.М. Бутлерова

1. Атомы в молекулах соединены между собой в определенной последовательности химическими связями в соответствии с их валентностью. Порядок связи атомов называется их химическим строением. Углерод во всех органических соединениях четырехвалентен.

2. Свойства веществ определяются не только качественным и количественным составом молекул, но и их строением.

3. Атомы или группы атомов взаимно влияют друг на друга, от чего зависит реакционная способность молекулы.

4. Строение молекул может быть установлено на основании изучения их химических свойств.

Органические соединения обладают рядом характерных особенностей, которые отличают их от неорганических. Почти все они (за редким исключением) горючи; большинство органических соединений не диссоциирует на ионы, что обусловлено природой ковалентной связи в органических веществах. Ионный тип связи реализуется только в солях органических кислот, например, CH3COONa.

Гомологический ряд – это бесконечный ряд органических соединений, имеющих сходное строение и, следовательно, сходные химические свойства и отличающихся друг от друга на любое число СН2– групп (гомологическая разность).

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление – изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов.

Изомерия – это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Различают 2 вида изомерии: структурную изомерию и пространственную изомерию.

Структурная изомерия

Структурные изомеры – соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Пространственная изомерия

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.
Пространственными изомерами являются оптические и цис-транс изомеры (геометрические).

Цис-транс-изомерия

заключается в возможности расположения заместителей по одну или по разные стороны плоскости двойной связи или неароматического цикла.В цис-изомерах заместители находятся по одну сторону от плоскости кольца или двойной связи, в транс-изомерах – по разные.

В молекуле бутена-2 СН3–СН=СН–СН3 группы СН3 могут находиться либо по одну сторону от двойной связи — в цис-изомере, либо по разные стороны — в транс-изомере.

Оптическая изомерия

Появляется тогда, когда углерод имеет четыре разных заместителя.
Если поменять местами любые два из них, получается другой пространственный изомер того же состава. Физико-химические свойства таких изомеров существенно различаются. Соединения такого типа отличаются способностью вращать плоскость пропускаемого через раствор таких соединений поляризованного света на определенную величину. При этом один изомер вращает плоскость поляризованного света в одном направлении, а его изомер – в противоположном. Вследствие таких оптических эффектов этот вид изомерии называют оптической изомерией.