26.03.2019

Электрические лампы накаливания части. Обзор характеристик ламп накаливания


Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы - так появились галогеновые лампы. Вольфрам - термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им - неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит - токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород - важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы - платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день - маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока - до 40 %.

Вспомните учебный курс - еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр - несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды - выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение - защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

Нить накала

По форме нить накаливания может быть разной - выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже - ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны - до 75 Вт световая отдача увеличивается, при превышении - снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель - у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

Виды

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение - в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория - изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения - 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.
  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, - к примеру, кинопроекционная или медицинская техника.

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные - подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе - ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая - для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая - для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности - если перегорит одна, то будет светиться другая.

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара - сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

КПД

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья - на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД - 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К - в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

Преимущества:

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.

Недостатки:

  • недолговечность - 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача - КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.

Как увеличить срок службы

Существует несколько причин, по которым может уменьшиться срок эксплуатации данных изделий:

  • перепады напряжения;
  • механические вибрации;
  • высокая температура окружающей среды;
  • разрыв соединения в проводке.
  1. Выберите изделия, которые подходят для диапазона напряжения сети.
  2. Перемещение осуществляйте строго в выключенном состоянии, поскольку из-за малейших вибраций изделие выйдет из строя.
  3. Если лампы продолжают перегорать в одном и том же патроне, то его нужно заменить или починить.
  4. При эксплуатации на лестничной площадке в электрическую цепь добавьте диод или включите параллельно две лампы одной мощности.
  5. На разрыв цепи питания можно добавить устройство для плавного включения.

Технологии не стоят на месте, постоянно развиваются, поэтому сегодня на смену традиционным лампам накаливания пришли более экономичные и долговечные светодиодные, люминесцентные и энергосберегающие источники света. Главными причинами выпуска ламп накаливания остается наличие менее развитых с технологической точки зрения стран, а также хорошо налаженное производство.

Приобретать такие изделия сегодня можно в нескольких случаях - они хорошо вписываются в дизайн дома или квартиры, либо вам нравится мягкий и комфортный спектр их излучения. Технологически - это давно устаревшие изделия.

Много разговоров и необоснованных споров стоит вокруг этого вопроса. Кто изобрел лампу накаливания? Одни утверждают, что это Лодыгин, другие, что Эдисон. Но все куда сложнее, давайте разберемся с хронологией исторических событий.

Существует множество методов трансформации электрической энергии в световую. К ним относятся лампы дугового принципа действия, газоразрядного и те, где источником свечения является нагревательная нить. Фактически лампочку накаливания тоже можно считать искусственным источником освещения, поскольку для ее работы применяется эффект нагреваемого проводника, через который проходит ток. В качестве накаливаемого элемента чаще всего выступает металлическая спираль или угольная нить. Помимо проводника в конструкцию лампочки входит колба, токоввод, предохранитель и цоколь. Однако всё это мы знаем уже сейчас. А ведь не так давно было время, когда несколько учёных вели одновременные разработки в области искусственных источников света и боролись за звание изобретателя лампочки.

Хронология изобретения

Читая всю статью снизу, очень удобно посматривать на эту таблицу:

1802 г. Электрическая дуга Василия Петрова.
1808 г. Гемфри Дэви описал дуговой электрический разряд между двумя угольными стержнями, создав первую лампу.
1838 г. Бельгийский изобретатель Жобар, создал первую лампу накаливания с угольным сердечником.
1840 г. Уоррен де ла Рю создал первую лампочку с платиновой спиралью.
1841 г. Англичанин Фредерик де Молейн запатентовал лампу с платиновой нитью и углеродным наполнением.
1845 г. Кинг заменил платиновый элемент на угольный.
1845 г. Немец Генрих Гёбель создал прототип современной лампочки.
1860 г. Англичанин Джозеф Суон (Свон) получил патент на лампу с углеродной бумагой.
1874 г. Александр Николаевич Лодыгин запатентовал лампу с угольным стержнем.
1875 г. Василий Дидрихсон усовершенствовал лампу Лодыгина.
1876 г. Павел Николаевич Яблочков создал каолиновую лампу.
1878 г. Английский изобретатель Джозеф Уилсон Суон запатентовал лампу с угольным волокном.
1879 г. Американец Томас Эдисон запатентовал свою лампу с платиновой нитью.
1890 г. Лодыгин создает лампы с нитями накаливания из вольфрама и молибдена.
1904 г. Шандор Юст и Франьо Ханаман запатентовали лампу с вольфрамовой нитью.
1906 г. Лодыгин запустил производство ламп в США.
1910 г. Вильям Дэвид Кулидж усовершенствовал метод производства вольфрамовых нитей.


Если вы хотите действительно разобраться, то настоятельно рекомендуем прочитать статью целиком.

Первые преобразования энергии в свет

В XVIII веке произошло знаменательное открытие, положившее начало огромной череде изобретений. Был обнаружен электрический ток. На рубеже следующего столетия итальянским учёным Луиджи Гальвани был изобретен способ получения электрического тока из химических веществ – вольтов столб или гальванический элемент. Уже в 1802 году физик Василий Петров открыл электрическую дугу и предложил применять ее в качестве осветительного устройства. Через 4 года королевское общество увидело электрическую лампу Гемфри Дэви, она освещала помещение за счёт искорок между стержнями из угля. Первые дуговые лампы отличались чересчур высокой яркостью и ценой, что делало их непригодными для ежедневного использования.

Лампа накаливания: прототипы

Первые разработки осветительных ламп с накаливаемыми элементами начались в середине 19-ого века. Так, в 1838 году бельгийский изобретатель Жобар представил проект лампы накаливания с угольным сердечником. Хотя время работы этого устройства не превышало получаса, оно являло собой свидетельство технологического прогресса в данной области. В 1840 -м году, Уоррен де ла Рю, английский астроном, произвёл лампочку с платиновой спиралью, первую в истории электротехники лампу с накаливаемым элементом в виде спирали. Изобретатель пропустил электрический ток через вакуумную трубку с помещенным в нее мотком платиновой проволоки. В результате нагревания платина излучала яркое свечение, а практически полное отсутствие воздуха позволяло использовать устройство в любых температурных условиях. Из-за дороговизны платины в коммерческих целях применять такую лампу было нелогично, даже с учётом её эффективности. Однако в дальнейшем именно образец этой лампочки стали считать предком других ламп накаливания. Уоррен де ла Рю спустя несколько десятилетий (в 1860 -х) принялся активно изучать феномен газоразрядного свечения под воздействием тока.

В 1841 году англичанин Фредерик де Молейн запатентовал лампы, представлявшие собой колбы с платиновой нитью, наполненные углеродом. Однако, проведенные им в 1844 г. испытания в отношении проводников, не увенчались успехом. Это было связано с быстрым плавлением платиновой нити. В 1845 году уже другой учёный, Кинг, заменил платиновые элементы накаливания на угольные палочки и получил на свое изобретение патент. В эти же годы за океаном, в США, Джон Старр запатентовал лампочку с вакуумной сферой и углеродной горелкой.

В 1854 -м году немецкий часовщик Генрих Гёбель придумал устройство, считающееся прототипом современных лампочек. Он продемонстрировал её на электротехнической выставке в США. Она представляла собой вакуумную лампу накаливания, которая действительно годилась для применения в самых различных условиях. В качестве источника света Генрих предложил использовать бамбуковую нить, которая была обуглена. Взамен колбы учёный брал простые бутылочки от туалетной воды. Вакуум в них создавался за счёт добавления и выливания ртути из колбы. Недостатком изобретения являлась излишняя хрупкость и время работы всего на несколько часов. В годы активной исследовательской жизни Гёбель не смог встретить должного признания в обществе, но в 75 лет он был назван изобретателем первой практичной лампы накаливания на основе угольной нити. Кстати, именно Гёбель впервые воспользовался осветительными проборами в рекламных целях: он ездил по Нью-Йорку на телеге, украшенной лампочками. На издали привлекающей внимание коляске была установлена подзорная труба, через которую ученый позволял за некоторую плату взглянуть на звёздное небо.

Первые результаты

Наиболее эффективные результаты в области получения вакуумной лампочки были достигнуты известным химиком и физиком из Англии – Джозефом Суоном (Своном). В 1860 годе он получил патент на своё изобретение, хотя лампа работала не слишком долго. Это было связано с использованием углеродной бумаги — она быстро превращалась в крошки после горения.

В середине 70-х гг. 19-го века параллельно со Своном несколько изобретений запатентовал и российский учёный. Выдающийся учёный и инженер Александр Лодыгин изобрёл в 1874 году нитевую лампу, в которой для нагревания использовался угольный стержень. К опытам по изучению осветительных приборов он приступил в 1872 году, находясь в Петербурге. В результате, благодаря банкиру Козлову, было основано общество по эксплуатации лампочек с углём. За своё изобретение учёный получил премию в Академии наук. Эти лампы сразу же стали использоваться для уличного освещения и здания Адмиралтейства.

Алекса́ндр Никола́евич Лоды́гин

Лодыгин также был первым, кто придумал применять закрученные в спираль вольфрамовые или молибденовые нити. К 1890 -м гг. у Лодыгина на руках было несколько разновидностей ламп с накаливаемыми нитями из разных металлов. Он предложил откачивать воздух из лампочки, чтобы процесс окисления шёл медленнее, а значит, срок службы лампы был больше. Первая коммерческая лампа со спиралевидной нитью из вольфрама в Америке производилась в дальнейшем как раз по патенту Лодыгина. Он изобрёл даже лампочки с газом, заполненные угольной нитью и азотом.

Идея Лодыгина в 1875 году была усовершенствована другим русским механиком-изобретателем Василием Дидрихсоном. Он изготавливал угольки, обугливая древесные цилиндрики в графитовых тиглях. Именно он первым сумел осуществить откачку воздуха и установил в лампочку более одной нити, чтобы при перегорании происходила замена. Выпущена такая лампа была под руководством Кона, а освещать ею стали большой магазин белья и подводные кессоны во время строительства моста в Петербурге. В 1876 году лампу усовершенствовал Николай Павлович Булыгин. Учёный накаливал только один конец уголька, который постоянно выдвигался в процессе обгорания. Тем не менее, устройство было сложным и дорогим.

В 1875-76 гг. электротехник Павел Яблочков, создавая электрическую свечу, обнаружил, что каолин (разновидность белой глины) под воздействием высокой температуры хорошо проводит электричество. Он изобрёл каолиновую лампочку с нитью накаливания из соответствующего материала. Отличительной особенностью этой лампы является тот факт, что для её работы не требовалось помещать каолиновую нить в вакуумную колбу – она сохраняла работоспособность при контакте с воздухом. Созданию лампочки предшествовала долгая работа учёного над дуговыми лампочками в Париже. Однажды Яблочков посещал местное кафе и, наблюдая за расставлением столовых приборов официантом, пришёл к новой идее. Угольные электроды он решил располагать параллельно друг другу, а не горизонтально. Существовала, правда, опасность, что выгорать будет не только дуга, но и токопроводящие зажимы. Дилемму решили за счёт добавления изолятора, постепенно выгоравшего вслед за электродами. Этим изолятором и стала белая глина. Чтобы лампочка загоралась, между электродами разместили перемычку из угля, а неравномерное сгорание самих электродов было сведено к минимуму за счёт использования генератора переменного тока.

Своё изобретение Яблочков продемонстрировал на технологической выставке в Лондоне в 1876 году. Уже через год один из французов, Денейруз, учредил акционерное общество по исследованию осветительных технологий Яблочкова. Сам учёный слабо верил в будущее лампы накаливания, однако электрические свечи Яблочкова имели огромную популярность. Успех был обеспечен не только низкой ценой, но и продолжительностью горения в 1,5 часа. Благодаря этому изобретению появились фонари с заменой свеч, и улицы стали освещать гораздо лучше. Правда, минусом таких свечей было наличие только переменного потока света. Чуть позже физик из Германии, Вальтер Нернст, разработал лампочку такого же принципа, но нить накаливания сделал из магнезии. Лампа зажигалась только после нагревания нити, для чего использовали сначала спички, а потом электрические нагреватели.

Борьба за патенты

К концу 1870-х гг. свою исследовательскую деятельность начал выдающийся инженер и изобретатель Томас Эдисон, живший в США. В процессе создания лампы он перепробовал разные металлы для нитей накаливания. Изначально учёный полагал, что решение проблемы электрических лампочек можно за счёт автоматического их отключения при высоких температурах. Но эта идея не сработала, так как постоянное выключение холодной лампы приводило лишь к получению непостоянного мерцающего излучения. Существует версия, что в конце 70-х гг. лейтенант русского флота Хотинский привёз несколько лампочек накаливания Лодыгина и показал их Эдисону, что и повлияло на его дальнейшие разработки.

Не останавливаясь на своих достижениях в Англии, Джозеф Суон (Joseph Swan), уже известный на тот момент в научных кругах, в 1878 году запатентовал лампу с угольным волокном. Оно помещалось в разреженную атмосферу с кислородом, поэтому свет выходил очень ярким. Уже через год в Англии появилось электрическое освещение в большинстве домов.

То́мас А́льва Эдисон

Тем временем, Томас Эдисон взял на работу в свою лабораторию Френсиса Аптона. Вместе с ним материалы стали тестировать точнее, и внимание было приковано к недочётам предыдущих патентов. В 1879 г. Эдисоном была запатентована лампочка с платиновой основой, а уже через год учёный создал лампу с угольным волокном и бесперебойным действием на 40 часов. За время работы американец провёл 1,5 тысячи испытаний и смог создать также поворотный выключатель бытового типа. Никаких новых изменений в электрическую лампочку Лодыгина Томас Эдисон в принципе не внёс. Просто из его стеклянной сферы с угольной нитью выкачивалась большая доля воздуха. Важнее то, что американский учёный разработал надсистему для лампочки, изобрел винтовой цоколь, патрон и предохранители, а в последствии организовал массовое производство.

Новые источники света смогли вытеснить газовые, а само изобретение некоторое время называлось лампой «Эдисона-Суона». В 1880 году Томас установил самое верное значение вакуума, которое создавало самое устойчивое безвоздушное пространство. Из лампочки воздух откачивали с помощью ртутного насоса.

К концу 1880 года бамбуковые волокна в лампочках могли гореть около 600 часов. Этот материал из Японии был признан лучшим угольным компонентом органического типа. Поскольку бамбуковые нити стоили довольно дорого, изготавливать их Эдисон предложил из хлопковых волокон, обработанных специальных способов. Первые компании для возведения крупных электрических систем были созданы в Нью-Йорке в 1882 году. В этот период Эдисон даже подавал в суд на Суона по поводу нарушения авторских прав. Но в итоге учёные создали совместную фирму «Edison-Swan United», которая довольно быстро выросла в мирового лидера по производству электрических лампочек.

За свою жизнь Томас Эдисон смог получить 1093 патента. Среди его известных изобретений: фонограф, кинетоскоп, телефонный передатчик. Однажды его спросили, не обидно ли было ошибаться 2 тысячи раз перед созданием лампочки. Учёный ответил: «Я не ошибался, а обнаружил 1 999 способов, как не нужно делать лампочку».

Металлические нити накаливания

На исходе 1890-х гг. стали появляться новые лампочки. Так, нити накаливания Вальтер Нернст предложил делать из особого сплава, в состав которого входили окиси магния, иттрия, тория и циркония. В лампе Ауэра (Карл Ауэр фон Вельсбах, Австрийская республика) излучателем света выступала осмиевая нить, а в лампочке Больтона и Фейерлейна – танталовая. Александр Лодыгин в 1890 году запатентовал лампу накаливания, где применялась быстронакаливаемая нить из вольфрама (было использовано несколько тугоплавким металлов, но именно вольфрам по результатам исследований имел лучшие показатели). Примечательно, что спустя 16 лет он продал все права на своё революционное изобретение промышленному гиганту «General Electric», компании, основанной великим Томасом Эдисоном.

Однако в истории электротехники известно два патента на вольфрамовую лампу – в 1904 году дуэт ученых Шандора Юста и Франьо Ханамана зарегистрировали изобретение, аналогичное лодыгинскому. Спустя год в Австро –Венгрии приступили к массовому выпуску этих ламп. Позднее в «General Electric» стали производить лампочки-колбы с инертными газами. Учёному из этой организации, Ирвингу Ленгмюру, в 1909 году удалось модернизировать изобретение Лодыгина, добавив в неё аргон с целью продлить срок действия и увеличить светоотдачу.

В 1910 году Вильям Кулидж усовершенствовал процессы промышленного изготовления вольфрамовых нитей, после чего начался выпуск ламп не только с элементом накаливания в виде спирали, но и в виде зигзага, двойной и тройной спирали.

Дальнейшие изобретения

  • С момента создания первых осветительных электроприборов постоянно проводились изучения свойств газоразрядных ламп, однако вплоть до начала 20-го столетия ученые проявляли к ним слабый интерес. Примером может послужить тот факт, что первейшие примитивные прототипы ртутных ламп были сконструированы в Великобритании еще в 1860-х годах, однако лишь в 1901 году Петер Хьюит изобрёл ртутную лампу низкого давления. Через пять лет в производство вышли аналоги высокого давления. А в 1911 году Жорж Клауди, инженер-химик из Франции, показал миру неоновую лампочку, которая тут же стала центром внимания всех рекламщиков.
  • В 1920-40-е гг. были изобретены натриевые лампы, люминесцентные и ксеноновые. Часть из них стали массово производить даже для использования в быту. На сегодняшний день в известно порядка 2 тысяч разновидностей источников света.
  • В СССР разговорным названием лампы накаливания стало словосочетание «лампочка Ильича». Именно эта идиома стала родной для крестьян и колхозников во времена всеобщей электрификации. В 1920 г. Владимир Ленин посетил одну из деревень для запуска электростанции, тогда-то и появилось крылатое выражение. Впрочем, изначально данное выражение применялось для обозначения плана по электрификации сельского хозяйства, поселков и деревень. Лампочка Ильича представляла собой патрон, свободно подвешиваемый за провод к потолку и свисающий вниз без плафона. В конструкцию патрона также входил выключатель, а проводка прокладывалась открытым способом по стенам.
  • Светодиодные лампы были разработаны в 60-х гг. для промышленных целей. Они имели небольшую мощность и не могли освещать территорию как следует. Однако сегодня именно это направление считается самым перспективным.
  • В 1983 г. появились компактные люминесцентные лампочки. Их изобретение было особенно важно в условиях необходимости экономии электроэнергии. К тому же, они не требуют дополнительной пусковой аппаратуры и подходят к стандартным патронам для ламп накаливания.
  • Не так давно сразу две фирмы из Америки создали для потребителей флуоресцентные лампы с возможностью очищения воздуха и удаления неприятных запахов. Поверхность их покрыта двуокисью титана, которая, облучаясь, запускает фотокаталитическую реакцию.

Видео как делают лампы накаливания на старых заводах.

Среди искусственных источников освещения самыми массовыми являются лампы накаливания. Везде, где есть электрический ток, можно обнаружить трансформацию его энергии в световую, и почти всегда для этого используются лампы накаливания. Разберемся, как и что в них накаливается, и какими они бывают.

Особенности конкретной лампы можно узнать, изучив индекс, выбитый на ее металлическом цоколе.

В индексе используются следующие цифро-буквенные обозначения:

  • Б - Биспиральная, аргоновое наполнение
  • БК - Биспиральная, криптоновое наполнение
  • В - Вакуумная
  • Г - Газополная, аргоновое наполнение
  • ДС, ДШ – Декоративные лампы
  • РН – различные назначения
  • А - Абажур
  • В - Витая форма
  • Д - Декоративная форма
  • Е - С винтовым цоколем
  • Е27 - Вариант исполнения цоколя
  • З - Зеркальная
  • ЗК - Концентрированное светораспределение зеркальной лампы
  • ЗШ - Широкое светораспределение
  • 215-230В - Шкала рекомендуемых напряжений
  • 75 Вт - Потребляемая мощность электроэнергии

Виды ламп накаливания и их функциональное назначение

  1. Лампы накаливания общего назначения
  2. По своему функциональному назначению наиболее распространенными являются лампы накаливания общего назначения (ЛОН). Все ЛОН, производимые в России должны соответствовать требованиям ГОСТ 2239-79. Их применяют для наружного и внутреннего, а также для декоративного освещения, в бытовых и промышленных сетях с напряжением 127 и 220 В и частотой 50 Гц.

    ЛОН имеют относительно недолгий срок, в среднем около 1000 часов, и невысокий КПД – они преобразуют в свет только 5% электроэнергии, а остальное выделяется в виде тепла.

    Особенностью маломощных (до 25 Вт) ЛОН является используемая в них, в качестве тела накала, угольная нить. Эта устаревшая технология использовалась еще в первых « » и сохранилась только здесь.

    Сейсмостойкие лампы, тоже входящие в группу ЛОН, конструктивно способны выдерживать сейсмический удар длительностью до 50 мс.

  3. Лампы накаливания прожекторные
  4. Прожекторные лампы накаливания отличаются значительно большей, по сравнению с остальными видами, мощностью и предназначены для направленного освещения или подачи световых сигналов на дальние расстояния. Согласно ГОСТу их разделяют на три группы: лампы кинопроекционные (ГОСТ 4019-74), для прожекторов общего назначения (ГОСТ 7874-76) и маячные лампы (ГОСТ 16301-80).

    Использование трехжильной проводки в домашней сети обеспечивает высокий уровень пожаробезопасности и уменьшает риски для жизни человека. В решении вопроса — — достаточно следовать элементарным правилам и схеме установки.

    Для оборудования электрических сетей жилых помещений средствами безопасности необходимо сделать выбор между установкой УЗО или дифавтомата. Помочь в этом сможет . Установить дифавтомат можно несколькими методами, о которых можно прочитать .

    Тело накала в прожекторных лампах длиннее и при этом расположено более компактно, для усиления габаритной яркости и последующей фокусировки светового потока. Задачу фокусировки решают специальные фокусирующие цоколи, предусмотренные в некоторых моделях, либо оптические линзы в конструкциях прожекторов и маяков.

    Максимальная мощность выпускаемых сегодня в России прожекторных ламп составляет 10 кВт.

  5. Лампы накаливания зеркальные
  6. Зеркальные лампы накаливания отличают особая конструкция колбы и светоотражающий алюминиевый слой. Светопроводящая часть колбы выполнена из матового стекла, что придает свету мягкость и сглаживает контрастные тени от предметов. Такие лампы маркируются индексами обозначающими тип светового потока: ЗК (концентрированное светораспределение), ЗС (среднее светораспределение) или ЗШ (широкое светораспределение).

    К этой же группе относят неодимовые лампы, отличие которых состоит в добавлении окиси неодима в формулу состава, из которого выдувается стеклянная колба. Благодаря этому часть желтого спектра поглощается, и цветовая температура сдвигается в область более яркого белого излучения. Это позволяет использовать неодимовые лампы в интерьерном освещении для большей яркости и сохранения оттенков в интерьере. В индекс неодимовых ламп добавлена буква «Н».

    Сфера применения зеркальных ламп огромна: витрины магазинов, сценическое освещение, оранжереи, теплицы, животноводческие хозяйства, освещение медицинских кабинетов и многое другое.

  7. Лампы накаливания галогенные
  8. Перед тем, как определить, какая именно лампа накаливания вам нужна, стоит изучить особенности и маркировку существующих типов. При всем их разнообразии, нужно точно понимать назначение выбираемой лампы и то, как и где она будет использоваться. Несоответствие характеристик лампы задачам, под которые она приобретается, может повлечь не только ненужные расходы, но и привести к аварийным ситуациям, вплоть до повреждения электросети и пожара.

    Занимательное видео, характеризирующее работу трех видов лампочек

Добавить сайт в закладки

Когда появилась первая лампа накаливания?

В 1809 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью). В 1838 году бельгиец Жобар изобретает угольную лампу накаливания. В 1854 году немец Генрих Гёбель разработал первую «современную» лампу - обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой. В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.

11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.

В 1875 году В. Ф. Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них следующий включался автоматически).

Английский изобретатель Джозеф Уилсон Суон получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.

Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл бытовой поворотный выключатель. Несмотря на столь непродолжительное время жизни, его лампы вытесняют использовавшееся до тех пор газовое освещение.

В 1890-х годах А. Н. Лодыгин изобретает несколько типов ламп с нитями накала из тугоплавких металлов. Лодыгин предложил применять в лампах нити из вольфрама (именно такие применяются во всех современных лампах) и молибдена и закручивать нить накаливания в форме спирали. Он предпринял первые попытки откачивать из ламп воздух, что сохраняло нить от окисления и увеличивало их срок службы во много раз. Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены и газонаполненные лампы (с угольной нитью и заполнением азотом).

С конца 1890-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна). В 1904 году венгры д-р Шандор Юст и Франьо Ханаман получили патент за № 34541 на использование в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году.В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric.

В том же 1906 году в США он построил и пустил в ход завод по электрохимическому получению вольфрама, хрома, титана. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.

Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным, известным специалистом в области вакуумной техники Ирвингом Ленгмюром, который, работая с 1909 года в фирме «General Electric», ввёл в производство наполнение колбы ламп инертными, точнее тяжёлыми благородными, газами (в частности, аргоном), что существенно увеличило время их работы и повысило светоотдачу.

КПД и долговечность

Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла.

Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K (обычная лампа на 60 Вт) КПД составляет 5 %.

С возрастанием температуры КПД лампы накаливания увеличивается, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов, при увеличении напряжения на 20 % яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %.

Уменьшение напряжения питания хотя и понижает КПД, но зато увеличивает долговечность. Так, понижение напряжения в два раза (при последовательном включении) уменьшает КПД примерно в 4-5 раз, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда необходимо обеспечить надёжное дежурное освещение без особых требований к яркости, например на лестничных площадках. Часто для этого при питании переменным током лампу подключают последовательно с диодом, благодаря чему ток в лампу идет только в течение половины периода.

Так как стоимость потребленной лампой накаливания за время службы электроэнергии в десятки раз превышает стоимость самой лампы, существует оптимальное напряжение, при котором стоимость светового потока минимальна. Оптимальное напряжение несколько выше номинального, поэтому способы повышения долговечности путем понижения напряжения питания с экономической точки зрения абсолютно убыточны.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.

Наибольший износ нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно, используя разного рода устройства плавного запуска.

Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная - более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной.

Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности, диммеры (автоматические или ручные). Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.

Низковольтные лампы накаливания при той же мощности имеют больший ресурс и светоотдачу благодаря большему сечению тела накаливания. Поэтому в многоламповых светильниках (люстрах) целесообразно применение последовательного включения ламп на меньшее напряжение вместо параллельного включения ламп на напряжение сети. Например, вместо параллельно включенных шести ламп 220В 60Вт применить шесть последовательно включенных ламп 36 В 60Вт, то есть заменить шесть тонких спиралей одной толстой.

Разновидности ламп

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • вакуумные (самые простые);
  • аргоновые (азот-аргоновые);
  • криптоновые (примерно +10% яркости от аргоновых);
  • ксеноновые (в 2 раза ярче аргоновых);
  • галогенные (наполнитель I или Br, в 2,5 раза ярче аргоновых, большой срок службы, не любят недокала, так как не работает галогенный цикл);
  • галогенные с двумя колбами (более эффективный галогенный цикл за счет лучшего нагрева внутренней колбы);
  • ксенон-галогенные (наполнитель Xe + I или Br, наиболее эффективный наполнитель, до 3х раз ярче аргоновых);
  • ксенон-галогенные с отражателем ИК излучения (так как большая часть излучения лампы приходится на ИК диапазон, то отражение ИК излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей);
  • накаливания с покрытием, преобразующим ИК излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

Легендарные лампочки Ильича можно назвать классикой жанра, «динозаврами» источников освещения, т.к. патент на их создание был принят в далеком 1879 году. Далее мы рассмотрим основные технические характеристики ламп накаливания, виды, а также плюсы и минусы применения в быту.

Устройство лампы накаливания включает в себя стеклянную колбу, в которой находиться вольфрамовая нить и инертный газ (ксенон, криптон либо аргон). Нить установлена на специальных опорах и электродах, через которые проходит электрический ток (наглядно вы можете увидеть конструкцию на картинке выше). При вкручивании цоколя в патрон, электричество проходит к вольфрамовой нити, которая накаляется и излучает свет. В этом и заключается принцип действия лампочки.

Характеристика

Основные технические характеристики лампы накаливания:

  • диапазон мощностей — от 25 до 150 Вт (для бытового применения) до 1000 Вт;
  • температура накала вольфрамовой нити в пределах 3000 градусов;
  • световая отдача – от 9 до 19 Лм/ 1 Вт (к примеру, световой поток лампы накаливания 40 Вт может варьироваться от 415 до 460 Лм);
  • номинальное напряжение — 220-230 В и 127 В;
  • частота – 50 Гц;
  • размер цоколя – 14 мм (E14), 27 мм (E27) и 40 мм (E40);
  • ресурс работы или по простому срок службы – при нормальном напряжении около 1000 часов (220В) и 2500 часов (127 В);
  • цоколь – резьбовой, штифтовой одно- и двухконтактный.

Технические характеристики бытовых ламп накаливания:



С параметрами разобрались, теперь поговорим о разновидностях.

Разновидности

На сегодняшний день существует широкий ассортимент лампочек, которые разделяются по следующим признакам:

  • форма колбы (шарообразная, цилиндрическая, трубчатая, шароконическая и т.д.);
  • покрытие колбы (прозрачное, зеркальное, матовое);
  • назначение (общее, местное, кварцевогалогенные);
  • наполнитель колбы (вакуум, аргон, ксенон, криптон, галоген и т.д.).

Рассмотрим фото и характеристики наиболее популярных видов ламп накаливания.

Прозрачные наиболее распространенный вариант. Такие изделия самые дешевые и наименее эффективные, т.к. световой поток рассеивается неравномерно. Недостаток прозрачных колб в том, что свет «бьет» по глазам. Зеркальные колбы более эффективные, т.к. покрытие создает направленный световой поток. Такие изделия пользуются популярностью при освещении витрин и торговых залов. Матовые делают освещение более мягким и рассеянным, благодаря чему создаются благоприятные условия для работы и отдыха при включенном свете. Изделия местного освещения работают при напряжении 12-24-38 Вольт, что необходимо для создания безопасных условий труда. Такие источники света могут применяться для освещения смотровой ямы при .

Маркировка

Маркировка ламп накаливания имеет вид: Первая буквенная часть — особенность конструкции и физические свойства изделия (Б — аргоновая биспиральная, В – вакуумная, Г – газополная аргоновая моноспиральная, БК – биспиральная криптоновая, МЛ – в колбе молочного цвета, МТ – матовая колба, О – опаловая колба). Вторая буквенная часть — назначение изделия (Ж – железнодорожная, СМ – самолетная, КМ – коммутаторная, А – автомобильная, ПЖ – прожекторная). Первая цифирная часть – номинальное напряжение и мощность. Вторая цифирная часть – номер доработки. К примеру, маркировка Б235 – 245-60 означает, что изделие биспиральное, работает при напряжении 245 В и имеет мощность 60 Вт.

Достоинства

Главное преимущество ламп накаливания заключаются в наименьшей стоимости изделий, по сравнению с конкурентами (светодиодами, и т.д.). Помимо этого можно выделить еще ряд преимуществ, которые и являются причиной выбора данных источников света:

  • Могут нормально работать при низких температурах, благодаря чему применяются при .
  • При незначительных скачках напряжения изделие не выходит из строя.
  • Работают даже при очень низком напряжении (только вот интенсивность освещения снизится).
  • Разновидность и мощность изделий имеет широкий диапазон, благодаря чему можно выбрать подходящий под определенные условия эксплуатации продукт.
  • Могут нормально функционировать при повышенной влажности.
  • Подключаются к сети без дополнительного оборудования.
  • Превосходят газозарядные источники света по безопасности.