22.02.2019

Калькулятор для расчета элеватора системы отопления. Принцип работы элеватора отопления с регулируемым соплом


Безусловно, отопление является важнейшей системой жизнеобеспечения в любом доме. Его можно встретить в любых постройках, которые получают центральное теплоснабжение. В такой системе очень важными механизмами являются элеваторные узлы отопления.

Из каких частей они состоят, как функционируют и вообще, что такое элеваторный узел отопления в этой статье мы и будем рассматривать.

Элеватор что это такое

Чтобы понять и разобраться, что собой представляет этот элемент, лучше всего спуститься в подвал здания и посмотреть воочию. Но если у вас нет желания покидать ваш дом, то можно ознакомиться с фото и видео файлами в нашей галерее. В подвале среди множества задвижек, клапанов, трубопроводов, манометров и термометров вы обязательно найдете этот узел.

Предлагаем вначале разобраться в принципе работы. К зданию подводится горячий от районной котельной, и отводиться охлажденный.

Для этого требуются:

  • Трубопровод подачи – выполняет поставку горячего теплоносителя к потребителю;
  • Трубопровод обратки – выполняет работу по отводу охлажденного теплоносителя и возврата его в районную котельную.

На несколько домов, а в некоторых случаях и на каждый, если дома большие, оборудуются тепловые камеры. В них происходит распределение теплоносителя между домами, а также установлена запорная арматура, которая служит для отсечения трубопроводов. Также в камерах могут выполняться дренажные приспособления, которые служат для опустошения труб, например, для ремонтных работ. Далее процесс зависит от температуры теплоносителя.

В нашей стране есть несколько основных режимов работы районных котельных:

  • Подача 150 и обратка 70 градусов Цельсия;
  • Соответственно 130 и 70;
  • 95 и 70.

Выбор режима зависит от широт проживания. Так, например, для Москвы будет достаточно графика 130/70, а для Иркутска понадобится график 150/70. Названия этих режимов имеют числа максимальной нагрузки трубопроводов. Но в зависимости от температуры воздуха за окном, котельная может работать при температурах 70/54.

Делается это для того, чтобы не было перегрева в помещениях и чтобы в них было комфортно находиться. Выполняется эта регулировка на котельной и является представителем центрального типа регулировки. Интересным является тот факт, что в европейских странах выполняется другой тип регулировки – местный. То есть происходит регулировка на самом объекте теплоснабжения.

Тепловые сети и котельные в таком случаях работают по максимальному режиму. Стоит сказать, что наиболее высокая производительность котельных агрегатов достигается именно при максимальных нагрузках. приходит к потребителю и уже по месту регулируется специальными механизмами.

Эти механизмы состоят из:

  • Датчиков температуры наружного воздуха и внутреннего;
  • Сервопривода;
  • Исполнительного механизма с клапаном.

Такие системы оборудуются индивидуальными приборами для учета тепловой энергии, за счет этого достигается большая экономия денежных ресурсов. По сравнению с элеваторами такие системы менее надежны и долговечны.

Так вот, если теплоноситель имеет температуру не более 95 градусов, то главной задачей является качественное физическое распределения тепла по всей системе. Для достижения этих целей применяют коллекторы и балансировочные краны.

Но в том случае, когда температура выше 95 градусов, то её нужно немного уменьшить. Этим и занимаются элеваторы в системе отопления, они подмешивают к подающему трубопроводу охлажденную воду с обратного.

Важно. Процесс регулировки элеваторным узлом является самым простым и дешевым механизмом, главное правильно произвести расчет элеватора отопления.

Функции и характеристики

Как мы уже с вами разобрались, элеватор системы отопления занимается охлаждением перегретой воды до заданной величины. Затем эта подготовленная вода поступает в .

Этот элемент выполняет повышение качества работы всей системы здания и при правильном монтаже и подборе выполняет две функции:

  • Смесительную;
  • Циркуляционную.

Преимущества, которыми обладает элеваторная система отопления:

  • Простота конструкции;
  • Высокая эффективность;
  • Не требуется подключение к электрическому току.

Недостатки:

  • Нужен точный и качественный расчет и подбор элеватора отопления;
  • Нет возможностей регулировать температуру на выходе;
  • Нужно соблюдать перепад давления между подачей и обраткой в районе 0,8-2 бар.

В наше время такие элементы получили огромное распространение в хозяйстве тепловых сетей. Это обуславливается их преимуществами, такими как устойчивость к изменению гидравлических и температурных режимов. К тому же они не требуют постоянного присутствия человека.

Важно. Расчет, подбор и настройку элеваторов не стоит выполнять своими руками, это дело лучше оставить для специалистов, так как ошибка выбора может привести к большим проблемам.

Конструкция

Элеватор состоит из:

  • Камеры разрежения;
  • Сопла;
  • Струйного элеватора.

Среди теплотехников есть понятие как обвязка узла элеватора. Оно заключается в установке необходимой запорной арматуры, манометров и термометров. Все это в сборе и является узлом.

Важно! На сегодняшний день производители реализуют элеваторы, которые способны благодаря электрическому приводу выполнять регулировку сопла. При этом есть возможность выполнять регулировку расхода теплоносителя в автоматическом режиме. Но стоит также отметить, что такое оборудование пока не отличается высокой степенью надежности.

Надежность на долгие годы

Технический прогресс не останавливается ни на секунду. Все больше новых технологий находят свое применение при теплофикации зданий. Есть одна альтернатива привычным элеваторам – это оборудование с авто регулировкой температуры. Их принято считать более энергосберегающими и экономичными, но цена их выше. К тому же они не могут работать без электроснабжения, причем периодически нуждаются в большой мощности. Что же лучше применять покажет лишь время.

Итоги

В этой статье мы выяснили, что такое элеватор в системе отопления, из чего он состоит и как работает. Как выяснилось, такое оборудование широко распространено благодаря своим неоспоримым преимуществам. Нет предпосылок для того, чтобы коммунальные предприятия отказались от них.

Альтернативы для этого оборудования есть, но они отличается своей высокой стоимостью, меньшей надежностью и энергоэффективностью, потому что требуют для своей работы электричество и периодические ремонты.

Содержание раздела

Широкое применение элеваторов конструкции ВТИ - Теплосеть Мосэнерго в тепловых сетях вызвано тем, что, обеспечивая устойчивое постоянство коэффициента смешения при изменениях теплового и гидравлического режима в тепловой сети, элеватор компактен и дешев. Он не имеет движущихся частей, не требует постоянного наблюдения и ремонта. Наладка элеватора сводится к изменению выходного отверстия сопла, замена которого несложна.

Методика расчета элеваторов была разработана в 1935 г. Подробные испытания элеваторов с цилиндрической камерой смешения были выполнены в ВТИ Р. П. Сазоновым в 1958-1959 гг.

На основе этих испытаний ВТИ совместно с Теплосетью Мосэнерго при участии завода-изготовителя разработана конструкция стального элеватора (рис. 4.7.1). Основные размеры этих элеваторов приведены в табл. 4.7.1.

Стандартизация элеваторов проведена в основном по определяющему размеру - диаметру горловины элеватора (камеры смешения). Предусмотрена возможность замены элеватора на ближайший размер без переварки присоединительных трубопроводов - для этого соседние номера элеваторов имеют одинаковые присоединительные размеры. В целях экономии металла сопло разделено на две части - постоянную и сменную .

Конструкция сопла элеватора, в котором сменной частью является короткий насадок, ввинчиваемый на резьбе, приведена на рис. 4.7.2. Размеры сопла - в табл. 4.7.2.

Точная центровка сопла по оси элеватора обеспечивается токарной обработкой всех деталей элеватора. Сварка должна производиться в кондукторе. Специальный фасонный фланец зажимает сопло элеватора, что предотвращает переток сетевой воды в обход сопла. Обычно перед элеватором устанавливается короткий патрубок с фасонным фланцем для возможности легкой замены сменного сопла. Конструкция элеватора рассчитана на избыточное давление 1 МПа. По тому же принципу и размерам спроектирован и выпускается чугунный элеватор в г. С.-Петербурге. Размеры проточной части и сопла чугунного элеватора идентичны размерам стального элеватора.

Рис.4.7.1. Стальной элеватор конструкции ВТИ – Теплосеть Мосэнерго:

1 – сопло; 2 – приемная камера; 3 – смесительная камера; 4 - диффузор

Рис.4.7.2. Сопло элеватора

Таблица 4.7.1. Основные размеры элеватора конструкции ВТИ – Теплосеть Мосэнерго, мм

№ элеватора d L A Б B Г Е d 1 d 2 d 3 d 4 d 5 d 6 d 7 D 1 Масса без до-полнительного фланца, кг
1 15 425 90 110 187 127 12 37 45 51 57 51 57 32 165 100
2 20 425 90 110 208 133 8 37 45 51 57 51 57 32 165 100
3 25 625 135 155 288 186 13 49 57 70 76 70 76 44 200 150
4 30 625 135 155 311 186 11 49 57 70 76 70 76 44 200 150
5 35 625 135 155 333 183 8 49 57 70 76 70 76 44 200 150
6 47 720 180 175 456 251 16 80 89 100 108 100 108 72 220 230
7 59 720 180 175 452 247 18 80 89 100 108 100 108 72 220 230

Таблица 4.7.2. Размеры сопла элеватора ВТИ – Теплосеть Мосэнерго, мм

№ элеватора L A Б B Г D d c d 1 d 2 d 3
1 110 65 55 10 45 20 4 44 32 39
2 100 65 45 10 35 20 2 44 32 39
3 145 105 50 10 40 30 5 56 44 49
4 135 105 40 5 35 30 3 56 44 49
5 125 105 30 10 20 30 3 56 44 49
6 175 130 60 15 45 35 2 88 72 81
7 155 130 40 15 25 35 2 88 72 81

Размеры типовых водоструйных элеваторов подбираются по сопротивлению местной отопительной системы S и коэффициенту смешения u .

Диаметр камеры смешения, м,

\(d=\mathrm{1,}\text{13}\sqrt{\frac{\text{595}-\text{430}{\left(\frac{u}{u+1}\right)}^{2}}{S}}\), (4.7.1)

Где S - сопротивление местной отопительной системы, Па×с 2 /м 6 .

Для предварительных расчетов при обычных значениях u = 1 – 3 можно пользоваться упрощенной формулой

\(d=5/\sqrt{S}\).

По найденному значению d , м, выбирают ближайший типовой размер элеватора. Диаметр сопла элеватора, м,

d 1 =d /\(\sqrt{(\mathrm{0,}\text{00062}{d}^{4}+\mathrm{0,6})+(1+u{)}^{2}-\mathrm{0,}\text{44}{u}^{2}}\text{.}\) (4.7.2)

Перепад давлений в рабочем сопле элеватора, Па,

\({\mathit{\Delta p}}_{м\text{.}с}={G}_{р}{v}_{р}/({\mathrm{2\phi }}_{1}^{2}{f}_{1}^{2})\), (4.7.3)

где G р - расход рабочей воды, кг/с; v р - удельный объем воды, м 3 /кг; j 1 - коэффициент скорости рабочего сопла, обычно принимается равным 0,95; f 1 - сечение сопла, м 2 .

Перепад давлений, создаваемый элеватором, Па,

\({\mathit{\Delta p}}_{м\text{.}с}={\text{SG}}_{р}(1+u{)}^{2}{v}_{м\text{.}с}^{2}\), (4.7.4)

где S - сопротивление местной отопительной системы, Па×с 2 /м 6 ; v м.с -удельный объем воды в местной системе, м 3 /кг.

Уравнение характеристики водоструйных элеваторов с цилиндрической камерой смешения имеет вид

\(\frac{{\mathit{\Delta p}}_{3}}{{\mathit{\Delta p}}_{1}}={\phi }_{1}^{2}\frac{{f}_{1}}{{f}_{3}}\left({\mathrm{2\phi }}_{2}+\left({\mathrm{2\phi }}_{2}-\frac{1}{{\phi }_{4}^{2}}\right)\times \frac{{f}_{1}}{{f}_{\mathit{н2}}}{u}^{2}-(2-{\phi }_{3}^{2}\left)\frac{{f}_{1}}{{f}_{3}}\right(1+u{)}^{2}\right)\), (4.7.5)

Где – p 1 = p 1 – p 2 ; p 1 – давление сетевой воды перед соплом; p 2 – давление инжектируемой воды; p 3 = p 3 – p 2 ; p 3 – давление воды на выходе из диффузора элеватора; j 1 , j 2 , j 3 , j 4 - коэффициенты скорости соответственно рабочего сопла, камеры смешения, диффузора, входного участка камеры смешения (при хорошем выполнении и тщательной сборке рекомендуется принимать j 1 = =0,95; j 2 = 0,975; j 3 = 0,9; j 4 = 0,925); f 1 и f 3 - площади сечений рабочего сопла и цилиндрической камеры смешения; f н2 - площадь сечения инжектируемого потока при входе в цилиндрическую камеру смешения (f н2 = f з - f 1).

Для местного количественного регулирования отопительной нагрузки применяются элеваторы с регулируемым выходным сечением рабочего сопла (см. рис. 4.1.6). При снижении отопительной нагрузки регулирующая игла вдвигается в сопло, что приводит к уменьшению выходного сечения сопла f 1 . В результате уменьшается расход сетевой воды G р, но возрастает коэффициент инжекции u , поэтому расход воды через отопительную систему G с = G р (1 +u ) уменьшается медленнее, чем расход сетевой воды через сопло. Характеристика элеватора с регулируемым сечением сопла рассчитывается по (4.7.5).

Установка регулирующей иглы вызывает снижение коэффициентов скорости сопла и входного участка камеры смешения . В пределах изменения \({\stackrel{\bar }{\stackrel{\bar }{f}}}_{1}\) от 1 до 0,2 коэффициент скорости сопла

j 1 = 0,7 + 0,2\({\stackrel{\bar }{\stackrel{\bar }{f}}}_{1}\), (4.7.6)

Где \({\stackrel{\bar }{\stackrel{\bar }{f}}}_{1}\) - отношение рабочей выходной площади сечения сопла (при введенной в него регулирующей игле) к площади сечения сопла без иглы. Коэффициент скорости входного участка камеры смешения j 4 = 0,9.

Схема установки элеваторов показана на рис. 4.7.3.

Рис. 4.7.3. Схема установки элеватора

1 - манометр; 2 - термометр; 3 - обратный клапан; 4 - регулятор расхода; 5 - элеватор; 6 - клапан подпора; 7 - водомер; 8 - грязевик

Водоструйные элеваторы применяют для систем отопления с потерями давления в них не более 15 кПа. Одним элеватором можно обслуживать группу зданий при суммарном расходе тепла до 350 кВт, причем потери давления в трубопроводах отдельных зданий не должны превышать 10 кПа. Коэффициент полезного дейcтвия элеватора низкий (до 25%), поэтому давление в тепловой сети перед элеватором должно быть больше давления, расходуемого в местной системе отопления, в 5-10 раз.

Размеры элеватора можно подбирать, пользуясь номограммой, приведенной на рис. 4.7.4.

Определяют количество циркулирующей в местной системе смешанной воды по формуле

\({G}_{3}=\frac{\mathrm{3,6}{Q}_{3}}{\mathrm{4,}\text{187}\left({t}_{3}-{t}_{2}\right)}\) , (4.7.7)

где Q 3 - расход тепла в местной системе, Вт; t 3 - температура воды в подающем трубопроводе внутренней системы. ° С; t 2 - температура воды в обратном трубопроводе внутренней системы и тепловой сети, ° С.

Находят коэффициент смешения элеватора

\(q=\frac{{t}_{1}-{t}_{3}}{\left({t}_{3}-{t}_{2}\right)}\), (4.7.8)

где t 1 - температура в подающем трубопроводе тепловой сети.

Приведенный расход воды G пр, т/ч, подсчитывают по формуле

\({G}_{\text{пр}}=\frac{{G}_{3}}{\text{10}\sqrt{{\mathit{\Delta p}}_{3}}}\), (4.7.9)

где [] - гидравлическое сопротивление местной системы отопления, Па.

Рис. 4.7.4. Номограмма для подбора элеватора

(G пр -приведенный расход воды, d с - диаметр сопла)

Примеры пользования номограммой. При G пр = 10 т/ч и q = 2,53 находим элеватор № 3 с d с = 8,5 мм; При G пр = 3,65 т/ч и q = 1,61 находим элеватор № 1 с d с = 6,7 мм.

По номограмме на рис. 4.7.4 находим по G пр и q номер элеватора и диаметр сопла d с.

В дополнение к центральному регулированию параметров теплоносителя в тепловой сети при использовании элеваторов предусматривается установка регуляторов давления «до себя» и «после себя» в абонентских вводах местных систем.

Основной расчетной характеристикой для элеватора является коэффициент смешения U, определяющий отношение расхода охлажденной воды системы к расходу горячей воды тепловой сети:

где:t c – температура воды теплой сети, о С;

t r – температура горячей воды системы отопления, о С;

t o – температура охлажденной воды системы отопления, о С.

Для подбора элеватора определяем давление, создаваемое насосом ∆p нас, Па, по формуле:

. (20)

где p э – располагаемое давление в тепловой сети на вводе в здание перед элеватором.

Диаметр горловины элеватора (камеры смешения) d r , мм, определяем по формуле:

. (21)

где G с – расчетный расход сетевой воды, кг/ч.

. (22)

где: с – теплоемкость воды, равная 4,18 кДж/(кг* 0 С);

β 1 – поправочный коэффициент, учитывающий дополнительный тепловой поток устанавливаемых ОП за счет округления сверх расчетной величины (β 1 =1,05);

β 2 - поправочный коэффициент, учитывающий дополнительные теплопотери ОП у наружных ограждений (β 2 =1,02).

По формуле (19) определяем коэффициент смешения, для которого t r =95 о С, t c =130 о С, t o =70 о С

U = (130-95)/(95-70) =1,4;

Определяем давление создаваемое насосом по формуле (20), для которого p э =120 кПа

∆p нас = 120/(1,4*(1+1,4) 2)=14,88 кПа;

Расчетный расход сетевой воды определяем по формуле (22) для которого β 1 =1,05, β 2 =1,02.

Диаметр горловины элеватора (камеры смешения) определяем по формуле (21):

мм.

По таблице 1 выбираем элеватор №5 с диаметром камеры смешения 35 мм и длиной 625 мм.

5 Гидравлический расчет системы водяного отопления

Гидравлический расчет системы водяного отопления производим для определения диаметров теплопроводов при заданной тепловой нагрузке и расчетном циркуляционном давлении. Расчет производим по методу средних удельных потерь.

Первоначально выбираем главное циркуляционное кольцо, проходящее через верхний отопительный прибор дальнего стояка. Определяем среднее значение удельного падения давления по главному циркуляционному кольцу:

, (24)

где K- коэффициент, учитывающий долю потери давления на местные сопротивления(для систем с искусственной циркуляцией k=0.35);

l – суммарная длина расчетных участков, м.

p c – расчетное циркуляционное давление(принимаем равным p нас (формула 20))

Определяем расход воды расчетных участков G уч, кг/ч:

, (25)

где Q – тепловая нагрузка участка, составленная из тепловых нагрузок отопительных приборов, Вт;

С – теплоемкость воды – 4,18 кДж/(кгС);

t 2 - t 0 – перепад температур в системе, С

Ориентируясь на R уд ср и G уч с помощью таблицы-приложения 6 подбираем фактический диаметр участка d и величину удельной потери давления на трение на каждом участке, перемножая R уд ф с длиной участка.

Находим потери давления на местные сопротивления:

, (26)

где P д – значение динамического давления, Па (приложение 7, стр. 457),

 - коэффициент местного сопротивления(приложение 5).

Местное сопротивление тройников и крестовин относят к расчетным участкам с меньшим расходом воды; местное сопротивление отопительных приборов учитывается поровну в каждом примыкающем к ним трубопроводе.

Общие потери давления на участке при выбранных диаметрах:

, (27)

Далее суммируем все потери в кольце, причем получившееся число должно быть в пределах от(0,9 - 0,95)P c располагаемого давления в кольце. Если условие это не выполняется, то необходимо выполнить перерасчет участков до выполнения условия.

Данные заносим в таблицу 5.1

Таблица 5.1 - Ведомость расчетов вентиляционных каналов

По схеме трубопроводов

По предварительному расчету

№ участка

Расход воды на участкеG, кг/ч

Длина участка l,м

Диаметр d, мм

Скорость движения воды W, м/с

Удельная потеря давления Rсруд, Па/м

Потери давления на трение Rфуд*l, Па

Сумма коэф. местных сопрот.åx

Потери давления в местных сопротивл. Z,Па

Суммарные потери давления (Rфуд*l+Z),.Па

Pc=0,9*120=108кПа>45,05кПа

6 Конструирование и расчет вытяжной вентиляции .

Жилое здание оборудуем вытяжной естественной канальной вентиляцией. Количество удаляемого воздуха должно быть не менее 3м 3 /ч на 1м 2 жилой площади. Удаление воздуха производим через решетки, расположенные на 0,5м ниже потолка. Согласно правилам пожарной безопасности не присоединяют к одному вытяжному каналу помещения, расположенные на разных этажах. Движение воздуха в воздуховоде возникает за счет разности давлений внутри помещения и снаружи у выхода воздуховода; называемой располагаемым давлением, определяемым как:

, (28)

где h-высота, в метрах, воздушного столба от середины вытяжного отверстия до устья шахты;

 н - плотность наружного воздуха при t н =5С ( н -1,27кг/м 3);

 в - плотность воздуха вентилируемого помещения при 18С ( в =1,21 кг/м 3) .

В качестве расчетной ветви принимаем вентканал верхнего этажа, как наиболее близко расположенный к устью шахты.

Предварительно определяем площадь сечения канала F,м 2 , по формуле:

, (29)

где W-скорость воздуха в канале, м/с.

L-воздухообмен вентилируемого помещения, м 3 /ч.

, (30)

Производим перерасчет прямоугольного канала на эквивалентный диаметр d э, м, по формуле:

, (31)

где a и b – размеры сторон прямоугольного воздуховода, мм.

По величине W и d э по номограмме определяем величину удельного сопротивления R, Па/м. Потери давления в ветви вентиляции p пот,Па, определяем как сумму потерь давления на трение и местные сопротивления:

где l – длина ветви участка, м;

 - коэффициент шероховатости (табл. А17);

 - сумма коэффициентов местных сопротивлений на участке, определяем на основании таблицы А18;

p  - динамическое давление, Па, определим по номограмме(рисунок А2.

Величина потерь давления должна быть равна или меньше располагаемого давления. Если отклонение в потерях давления составляет более 10%, необходимо изменить размеры сечения канала. Результаты измерений заносим в таблицу 6.1.

Lк=90<3*54,95=164,85м 3 /ч. Принимаем Lк=165 м 3 /ч.

Lсу(2)=50<3*64,45=193,35м 3 /ч. Принимаем Lк=194 м 3 /ч.

Lсу(1)=25+25=50 м 3 /ч.

Таблица 6.1 - Ведомость расчетов вентиляционных каналов

№ участка

Расход воздуха L, м 3 /ч

Длина участка l, м

Размер воздуховода ab, мм

Площадь сечения воздуховода F, м 2

Эквивалентный диаметр d э, мм

Скорость движения воздуха W, м/с

Удельная потеря давления R, Па/м

Потери давления на трение R*l * β, Па

Динамическое давление P д, Па

Сумма коэффициентов местных сопротивлений 

Потери давления в местных сопротивлениях * P д, Па

Суммарные потери давления P пот,Па

Δр=7,4*9,8(1,27-1,21)=4,35Па

По книге М.М. Апрарцева "Наладка водяных систем централизованного теплоснабжения"
Москва Энергоатомиздат 1983 г.

В настоящее время большинство систем отопления подключено по схеме элеваторного подключения. Одновременно, как показала практика, многие не совсем хорошо понимают принципы работы элеваторных узлов. В результате эффективность рабты систем отопления не всегда является приемлемой. При нормальной температуре теплоносителя в помещениях и квартирах температура либо слишком занижена, либо слишком завышена. Такой эффект может наблюдаться не только при неправильной настройке элеваторов, но большинство проблем возникает именно по этой причине. Поэтому расчету и наладки элеваторного узла должно быть уделено наибольшее внимание.
Расчетный диаметр горловины элеватора, мм, определяется по формуле:

Где:
Н - располагаемый напор, м.
Во избежание вибрации и шума, которые обычно возникают при работе элеватора под напором, в 2 - 3 раза превышающим требуемый, часть этого напора рекомендуется гасить дроссельной диафрагмой, устанавливаемым перед монтажным патрубком до элеватора. Более эффективный путь - установка регулятора расхода перед элеватором, который позволит максимально эффективно настроить и эксплуатировать элеваторный узел.
При выборе номера элеватора по расчетному диаметру его горловины следует выбирать стандартный элеватор с ближайшим меньшим диаметром горловины, так как завышенный диаметр риводит к резкому снижению КПД элеватора.
Диаметр сопла следует определять с точностью до десятой доли мм с округлением в меньшую сторону. Диаметр отверстия сопла во избежание засорения должен быть не менее 3 мм.
При установке одного элеватора на группу небольших зданий его номер определяется исходя из максимальных потерь напора в распеределительной сети после элеватора и в системе отопления для самого неблагоприятно расположенного потребителя, которые следует принимать с К = 1,1. При этом перед системой отопления каждого здания следует установить дроссельную диафрагму, расчитанную на гашение всего избыточного напора при расчетном расходе смешанной воды.
После расчета и установки элеватора необходимо провести его точную настройку и регулировку.
Регулировку следует проводить только после выполнения всех предварительно разработанных мероприятий по наладке.
Перед началом регулировки системы теплоснабжения должна быть обеспечена работа автоматических устройств, предусмотренных при разработке мероприятий для поддержания заданного гидравлического режима и безаварийной работы источника теплоты, сети, насосных станций и тепловых пунктов.
Регулировка централизованной системы теплоснабжения начинается с фиксирования фактических давлений воды в тепловых сетях при работе сетевых насосов, предусмотренных расчетным режимом, и поддержания в обратном коллекторе источника теплоты заданного напора.
Если при сопоставлении фактического пьезометрического графика с заданным обнаружатся значительно увеличенные потери напора на участках, необходимо установить их причину (функционирующие перемычки, не полностью открытые задвижки, несоответствие диаметра трубопровода принятому при гидравлическом расчете, засоры и т. п.) и принять меры к их устранению.
В отдельных случаях при невозможности устранения причин завышенных по сравнению с расчетом потерь напора, например при заниженных диаметрах трубопроводов, может быть произведена корректировка гидравлического режима путем изменения напора сетевых насосов с таким расчетом, чтобы располагаемые напоры на тепловых вводах потребителей соответствовали расчетным.
Регулировка систем теплоснабжения с нагрузкой горячего водоснабжения, для которых гидравлический и тепловой режимы были рассчитаны с учетом соответствующих регуляторов на тепловых вводах, проводится при исправной работе этих регуляторов.
Регулировка систем теплопотребления и отдельных теплопотребляющих приборов базируется на проверке соответствия фактических расходов воды расчетным. При этом под расчетным расходом понимается расход воды в системе теплопотребления или в теплопотребляющем приборе, обеспечивающий заданный температурный график. Расчетный расход соответствует необходимому для создания внутри помещений расчетной температуры при соответствии установленной площади поверхности нагрева необходимой.
Степень соответствия фактического расхода воды расчетному определяется температурным перепадом воды в системе или в отдельном теплопотребляющем приборе. При этом фактическая температура воды в сети не должна отклоняться от графика более чем на 2° С. Заниженный температурный перепад указывает на завышенный расход воды и соответственно завышенный диаметр отверстия дроссельной диафрагмы или сопла. Завышенный температурный перепад указывает на заниженный расход воды и соответственно заниженный диаметр отверстия дроссельной диафрагмы или сопла.
Соответствие фактического расхода сетевой воды расчетному при отсутствии приборов учета (расходомеров) с достаточной для практики точностью определяется:
для систем теплопотребления, подключенным к сетям через элеваторы или подмешивающие насосы, по формуле

(6)

Где:
y = Gф/Gр - отношение фактического расхода сетевой воды, поступающей в отопительную систему, к расчетному;
t " 1 , t " 3 и t " 2 - замеренные на тепловом вводе температуры воды соответственно в подающем трубопроводе, смешанной и обратной, гр.С;
t 1 , t 2 и t 3 -температуры воды соответственно в подающем трубопроводе, смешанной и обратной по температурному графику при фактической температуре наружного воздуха, гр.С;
t " в и t в - фактическая и расчетная температуры воздуха внутри помещений;
Для систем теплопотребления жилых и административных зданий, подключенных к тепловой сети без подмешивающих устройств, а также для отопительно-рециркуляционных калориферных установок по формуле:

Где Тн - фактическая температура наружного воздуха.
Скорректированный диаметр сопла элеватора, а также дроссельной диафрагмы, установленной перед системой, расчетное падение напоров в которой мало по сравнению с располагаемым напором на вводе этой системы (не более 5-10%) определяется по формуле:

при невозможности определения фактических потерь напора в системе-по их расчетному значению hр, м, по формуле:

(11)

где Н - располагаемый напор перед системой теплопотребления или теплоприемником. Значение hр принимают по проектным данным или по данным гидравлического расчета.
Измерения температур на тепловом пункте производятся при стабильной температуре воды в подающем трубопроводе, не отличающейся от заданной по температурному графику более чем на 2 гр.С.
Замена сопл элеваторов и дроссельных диафрагм производится при значениях 0,9>у>1,15, если установленная площадь поверхности нагрева соответствует необходимой для поддержания в помещениях расчетной внутренней температуры.
Если площадь поверхности нагрева фактически установленных отопительных приборов не соответствует необходимой, замена сопл элеваторов и дроссельных диафрагм должна производиться после анализа внутренней температуры в помещениях. Так, при избыточных площадях поверхностей нагрева система теплопотребления должна работать с относительным расходом воды у<1, при недостаточных-должна быть произведена дополнительная установка теплопотребляющих приборов.
Если после замены сопла элеватора или дроссельной диафрагмы проверка внутренней температуры отапливаемых помещений покажет, что она отличается от расчетной более чем на 2 гр.С, необходимо вторично откорректировать диаметр отверстия сопла или диафрагмы по формулам (9)-(11).
Относительный расход воды в этом случае подсчитывается по формуле

http://www.rosdon.h1.ru/elevator.html

Монтаж обогрева насчитывает, крепежи, развоздушки, систему соединения котел , коллекторы, бак для расширения, трубы, батареи терморегуляторы, увеличивающие давление насосы. Эти части отопления очень важны. Посему соответствие каждой части монтажа нужно осуществлять обдуманно. Монтаж обогревания коттеджа включает некоторые комплектующие. На открытой вкладке ресурса мы попытаемся подобрать для квартиры необходимые части системы.

Водоструйные элеваторы служат для подмешивания обратной воды к воде, поступающей из тепловой сети, и одновременно для создания циркуляционного напора в системе. Элеваторы бывают чугунные и стальные.

Вода из тепловой сети по патрубку 1 поступает через эжектирующее сопло 2 с большой скоростью в камеру смешения 3, где подмешивается обратная вода из системы отопления, которая подаётся в элеватор по патрубку 5. Смешанная вода поступает в подающий трубопровод системы отопления через диффузор 4.

Коэффициент смешения элеватора

T - температура воды поступающей из наружной подающей теплоцентрали в элеватор °С.

Конструктивными характеристиками элеватора являются диаметр эжектирующего сопла d с и смесительной горловины d г

Диаметр горловины вычисляется по формуле:

Δ Р нас = Δ Р с / (1,4 * (1 + U) 2)

Где Δ Р с – перепад давлений в подающей и обратной магистралях ТЭЦ, Па; U – коэффициент смешения

Диаметр сопла d с. мм

Источник: http://teplodoma.com.ua/labriori/moi_statiy/rashet_elevatora.htm

Отопительная система является одной из важнейших систем жизнеобеспечения дома. В каждом доме применяется определенная система отопления , но не каждый пользователь знает, что такое элеваторный узел отопления и как он работает, его назначение и те возможности, которые предоставляются с его применением.

Элеватор отопления с электроприводом

Принцип функционирования

Наилучшим примером, который покажет элеватор отопления принцип работы, будет многоэтажный дом. Именно в подвале многоэтажного дома среди всех элементов можно отыскать элеватор.

Первым делом, рассмотрим, какой в данном случае имеет элеваторный узел отопления чертеж. Здесь два трубопровода: подающий (именно по нему горячая вода идет к дому) и обратный (остывшая вода возвращается в котельную).

Схема элеваторного узла отопления

Из тепловой камеры вода попадает в подвал дома, на входе обязательно стоит запорная арматура. Обычно это задвижки, но иногда в тех системах, которые более продуманы, ставят шаровые краны из стали.

Как показывают стандарты, есть несколько тепловых режимов в котельных:

  • 150/70 градусов;
  • 130/70 градусов;
  • 95(90)/70 градусов.

Когда вода нагреет до температуры не выше 95-ти градусов, тепло будет распределено по отопительной системе при помощи коллектора. А вот при температуре выше нормы – выше 95 градусов, все становится намного сложнее. Воду такой температуры нельзя подавать, поэтому она должна быть уменьшена. Именно в этом и состоит функция элеваторного узла отопления. Заметим также и то, что охлаждение воды таким образом – это самый простой и дешевый способ.

Назначение и характеристики

Элеватор отопления охлаждает перегретую воду до расчетной температуры, после этого подготовленная вода попадает в отопительные приборы , которые размещены в жилых помещениях. Охлаждение воды случается в тот момент, когда в элеваторе смешивается горячая вода из подающего трубопровода с остывшей из обратного.

Принципиальная схема элеваторного узла

Схема элеватора отопления наглядно показывает, что данный узел способствует увеличению эффективности работы всей отопительной системы здания. На него возложено сразу две функции – смесителя и циркуляционного насоса . Стоит такой узел недорого, ему не требуется электроэнергия. Но элеватор имеет и несколько недостатков:

  • Перепад давления между трубопроводами прямого и обратного подавания должен быть на уровне 0,8-2 Бар.
  • Нельзя регулировать выходной температурный режим.
  • Должен быть точный расчет для каждого компонента элеватора.

Элеваторы широко применимы в коммунальном тепловом хозяйстве, так как они стабильны в работе тогда, когда в тепловых сетях изменяется тепловой и гидравлический режим. За элеватором отопления не требуется постоянно следить, все регулирование заключается в выборе правильного диаметра сопла.

Элеваторный узел в котельной многоквартирного дома

Элеватор отопления состоит из трех элементов – струйного элеватора, сопла и камеры разрежения. Также есть и такое понятие, как обвязка элеватора. Здесь должна применяться необходимая запорная арматура, контрольные термометры и манометры.

На сегодняшний день можно встретить элеваторные узлы системы отопления, которые могут с электрическим приводом отрегулировать диаметр сопла. Так, появится возможность автоматически регулировать температуру носителя тепла.

Подбор элеватора отопления такого типа обусловлен тем, что здесь коэффициент смешения меняется от 2 до 5, в сравнении с обычными элеваторами без регулирования сопла, этот показатель остается неизменным. Так, в процессе применения элеваторов с регулируемым соплом можно немного снизить расходы на отопление.

Строение элеватора

Конструкция данного вида элеваторов имеет в своем составе регулирующий исполнительный механизм, обеспечивающий стабильность работы системы отопления при небольших расходах сетевой воды. В конусообразном сопле системы элеватора размещается регулирующая дроссельная игла и направляющее устройство, которое закручивает струю воды и играет роль кожуха дроссельной иглы.

Этот механизм имеет вращающийся от электропривода или вручную зубчатый валик. Он предназначен для перемещения дроссельной иглы в продольном направлении сопла, изменяет его эффективное сечение, после чего расход воды регулируется. Так, можно повысить расход сетевой воды от расчетного показателя на 10-20%, или уменьшить его практически до полного закрытия сопла. Уменьшение сечения сопла может привести к увеличению скорости потока сетевой воды и коэффициента смешения. Так температура воды снижается.

Неисправности элеваторов отопления

Схема элеваторного узла отопления неисправности может иметь такие, которые вызваны поломкой самого элеватора (засорение, увеличение диаметра сопла), засорением грязевиков, поломкой арматуры, нарушениями настройки регуляторов.

Небольшой элеваторный узел отопления

Поломка такого элемента, как устройство элеватора отопления, может быть замечена по тому, как появляются перепады температуры до и после элеватора. Если разница большая – то элеватор неисправен, если разница незначительная – то он может быть засорен или диаметр сопла увеличен. В любом случае, диагностика поломки и ее ликвидация должны быть произведены только специалистом!

Если сопло элеватора засоряется, то он снимается и прочищается. Если расчетный диаметр сопла увеличивается вследствие коррозии или своевольного сверления, то схема элеваторного узла отопления и отопительная система в целом – придет в состояние разбалансированности.

Приборы, которые установлены на нижних этажах, перегреются, а на верхних – недополучат тепло. Такая неисправность, которую претерпевает работа элеватора отопления, ликвидируется заменой на новое сопло с расчетным диаметром.

Обслуживание элеваторного узла отопления

Засорение грязевика в таком устройстве, как элеватор в системе отопления, можно определить по тому, как увеличился перепад давления, контролируемого манометрами до и после грязевика. Такое засорение удаляется при помощи сброса грязи через краны спуска грязевика, которые размещены в его нижней части. Если так засор не удаляется, то грязевик разбирается и очищается изнутри.

Источник: http://otoplenie-doma.org/elevatornyj-uzel-otopleniya.html

По книге М.М. Апрарцева "Наладка водяных систем централизованного теплоснабжения"

Москва Энергоатомиздат 1983 г.

В настоящее время большинство систем отопления подключено по схеме элеваторного подключения. Одновременно, как показала практика, многие не совсем хорошо понимают принципы работы элеваторных узлов. В результате эффективность рабты систем отопления не всегда является приемлемой. При нормальной температуре теплоносителя в помещениях и квартирах температура либо слишком занижена, либо слишком завышена. Такой эффект может наблюдаться не только при неправильной настройке элеваторов, но большинство проблем возникает именно по этой причине. Поэтому расчету и наладки элеваторного узла должно быть уделено наибольшее внимание.

(5)

Н - располагаемый напор, м.

Во избежание вибрации и шума, которые обычно возникают при работе элеватора под напором, в 2 - 3 раза превышающим требуемый, часть этого напора рекомендуется гасить дроссельной диафрагмой, устанавливаемым перед монтажным патрубком до элеватора. Более эффективный путь - установка регулятора расхода перед элеватором, который позволит максимально эффективно настроить и эксплуатировать элеваторный узел.

При выборе номера элеватора по расчетному диаметру его горловины следует выбирать стандартный элеватор с ближайшим меньшим диаметром горловины, так как завышенный диаметр риводит к резкому снижению КПД элеватора.

Диаметр сопла следует определять с точностью до десятой доли мм с округлением в меньшую сторону. Диаметр отверстия сопла во избежание засорения должен быть не менее 3 мм.

При установке одного элеватора на группу небольших зданий его номер определяется исходя из максимальных потерь напора в распеределительной сети после элеватора и в системе отопления для самого неблагоприятно расположенного потребителя, которые следует принимать с К = 1,1. При этом перед системой отопления каждого здания следует установить дроссельную диафрагму, расчитанную на гашение всего избыточного напора при расчетном расходе смешанной воды.

После расчета и установки элеватора необходимо провести его точную настройку и регулировку.

Регулировку следует проводить только после выполнения всех предварительно разработанных мероприятий по наладке.

Перед началом регулировки системы теплоснабжения должна быть обеспечена работа автоматических устройств, предусмотренных при разработке мероприятий для поддержания заданного гидравлического режима и безаварийной работы источника теплоты, сети, насосных станций и тепловых пунктов.

Регулировка централизованной системы теплоснабжения начинается с фиксирования фактических давлений воды в тепловых сетях при работе сетевых насосов, предусмотренных расчетным режимом, и поддержания в обратном коллекторе источника теплоты заданного напора.

Если при сопоставлении фактического пьезометрического графика с заданным обнаружатся значительно увеличенные потери напора на участках, необходимо установить их причину (функционирующие перемычки, не полностью открытые задвижки, несоответствие диаметра трубопровода принятому при гидравлическом расчете , засоры и т. п.) и принять меры к их устранению.

В отдельных случаях при невозможности устранения причин завышенных по сравнению с расчетом потерь напора, например при заниженных диаметрах трубопроводов , может быть произведена корректировка гидравлического режима путем изменения напора сетевых насосов с таким расчетом, чтобы располагаемые напоры на тепловых вводах потребителей соответствовали расчетным.

Регулировка систем теплоснабжения с нагрузкой горячего водоснабжения , для которых гидравлический и тепловой режимы были рассчитаны с учетом соответствующих регуляторов на тепловых вводах, проводится при исправной работе этих регуляторов.

Регулировка систем теплопотребления и отдельных теплопотребляющих приборов базируется на проверке соответствия фактических расходов воды расчетным. При этом под расчетным расходом понимается расход воды в системе теплопотребления или в теплопотребляющем приборе, обеспечивающий заданный температурный график. Расчетный расход соответствует необходимому для создания внутри помещений расчетной температуры при соответствии установленной площади поверхности нагрева необходимой.

Степень соответствия фактического расхода воды расчетному определяется температурным перепадом воды в системе или в отдельном теплопотребляющем приборе. При этом фактическая температура воды в сети не должна отклоняться от графика более чем на 2° С. Заниженный температурный перепад указывает на завышенный расход воды и соответственно завышенный диаметр отверстия дроссельной диафрагмы или сопла. Завышенный температурный перепад указывает на заниженный расход воды и соответственно заниженный диаметр отверстия дроссельной диафрагмы или сопла.

Соответствие фактического расхода сетевой воды расчетному при отсутствии приборов учета (расходомеров) с достаточной для практики точностью определяется:

для систем теплопотребления, подключенным к сетям через элеваторы или подмешивающие насосы, по формуле

(6)

y = Gф/Gр - отношение фактического расхода сетевой воды, поступающей в отопительную систему, к расчетному;

t " 1 . t " 3 и t " 2 - замеренные на тепловом вводе температуры воды соответственно в подающем трубопроводе, смешанной и обратной, гр.С;

t 1 . t 2 и t 3 -температуры воды соответственно в подающем трубопроводе, смешанной и обратной по температурному графику при фактической температуре наружного воздуха, гр.С;

t " в и t в - фактическая и расчетная температуры воздуха внутри помещений;

Для систем теплопотребления жилых и административных зданий, подключенных к тепловой сети без подмешивающих устройств, а также для отопительно-рециркуляционных калориферных установок по формуле.