24.09.2019

Сечение шара плоскостью есть круг если. Сечение шара


Определение.

Сфера (поверхность шара ) - это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар - это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) - это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) - это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара :

V = 4 π R 3 = 1 π D 3
3 6

Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4π R 2 = π D 2

Уравнение сферы

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат :

x 2 + y 2 + z 2 = R 2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0) в декартовой системе координат :

(x - x 0) 2 + (y - y 0) 2 + (z - z 0) 2 = R 2

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются , а в плоскости пересечения образуется круг.


Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы - это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) - это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость - это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость - это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг . Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность , а на шаре местом сечения будет малый круг . Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R 2 - m 2 ,

Где R - радиус сферы (шара), m - расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) - это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение. Касательная к сфере - это прямая, которая касается сферы только в одной точке.

Определение. Касательная плоскость к сфере - это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара - это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2π Rh

1. Изображение шара. Пусть F 0 – шар. Выберем направление проектирования и рассмотрим касательные к шару, принадлежащие выбранному направлению. Эти касательные образуют цилиндрическую поверхность и проходят через точки большой окружности шара, плоскость которой перпендикулярна направлению проектирования.

Выберем плоскость изображения. В общем случае цилиндрическая поверхность пересечет эту плоскость по эллипсу, а проекция F 1 шара F 0 будет частью плоскости, ограниченной этим эллипсом. Такое изображение шара не является наглядным (рис. 59). Если плоскость изображения выбрать перпендикулярной направлению проектирования, то изображением шара будет круг F . Круг, конечно, дает о шаре более наглядное представление, но в круг можно спроектировать и равный ему круг, и цилиндр (если проектирование вести параллельно его образующим).


Прежде чем продолжить разговор о том, как сделать изображение шара наглядным, вспомним известные со школы понятия, связанные с шаром. Сечение шара плоскостью, проходящей через центр шара, называется большим кругом , а его окружность – экватором. Точки пересечения прямой, перпендикулярной плоскости экватора, с поверхностью шара называются полюсами, соответствующими этому экватору, а соединяющий их диаметр – полярной осью .

Если на проекционном чертеже шара изобразить какой-либо экватор и соответствующие ему полюсы, то у изображения появится объемность. Оно станет наглядным.

Какой экватор изображать? Во-первых, желательно, чтобы отрезок, соединяющий изображения полюсов, был на чертеже вертикальным. Это желание будет выполнено, если плоскость изображения p будет вертикальной, а плоскость a , проходящая через полюсы N 0 , S 0 шара, – ей перпендикулярной и тоже вертикальной. (Напомним, что мы договорились использовать ортогональное проектирование.) Более того, можно считать, что плоскость изображения p проходит через центр шара, и, значит, пересекает его по окружности большого круга. Эту окружность обычно называют очерковой окружностью шара.

Обозначим точки пересечения прямой с поверхностью шара буквами P 0 и Q 0 . Если плоскость экватора также выбрать перпендикулярной плоскости p , то экватор и диаметр, соединяющий полюсы, изобразятся перпендикулярными диаметрами окружности (рис. 60) и изображение шара не станет нагляднее. Поэтому плоскость экватора не должна быть перпендикулярной плоскости изображения. На рис. 61 дано сечение шара плоскостью a . На этом рисунке P 0 Q 0 – прямая пересечения плоскостей a и p ; C 0 D 0 – пересечение a и экваториального круга, N 0 S 0 – диаметр, соединяющий полюсы. При проектировании на плоскость p полюсы N 0 и S 0 спроектируется в точки N и S соответственно, диаметр C 0 D 0 экватора – в малую ось эллипса, изображающего этот экватор.


Большая ось эллипса (рис. 62) будет проекцией диаметра экватора, перпендикулярного диаметру и, следовательно, параллельного плоскости .

Чтобы указать положение полюсов, вернемся к рис. 61. Прямоугольные треугольники и на этом рисунке равны по гипотенузе и острому углу (углы с соответственно перпендикулярными сторонами). Поэтому . Но в свою очередь , где – отрезок касательной к эллипсу, изображающему экватор (рис. 62).

Итак, наглядное изображение шара можно построить следующим образом:

1) Строим эллипс, который принимаем за изображение экватора, и его оси.

2) Проводим окружность с центром в центре эллипса, радиус которой равен большой полуоси эллипса.


3) Строим отрезок касательной к эллипсу, параллельные его большой оси, а затем изображения полюсов.

На рис. 63 показана достаточно типичная ошибка, когда полюсы изображаются на очерковой окружности, а экватор при этом изображен эллипсом.

2. Изображение параллелей и меридианов. Рассмотрим изображение полюсов и меридианов сферы, являющейся поверхностью шара. Напомним, что параллелями сферы называются ее сечения плоскостями, параллельными плоскости экватора. Сечения сферы плоскостями, проходящими через полярную ось, называются меридианами.

Через каждую точку сферы, отличную от полюса, проходит точно один меридиан и одна параллель. Каждый меридиан проходит через оба полюса.

Параллели и меридианы являются окружностями, поэтому также изображаются эллипсами.

Начнем с изображения параллелей. Параллель будет определена, если задать точку, в которой ее плоскость пересекает полярную ось. Поскольку плоскость параллели параллельна плоскости экватора, изображением параллели будет эллипс, подобный эллипсу, изображающему экватор.

Для построения этого эллипса рассмотрим сечение сферы (шара) плоскостью, проходящей через полярную ось перпендикулярно плоскости изображения (правая часть рис. 64). Построенное вспомогательное сечение позволяет легко найти малую ось эллипса, изображающего экватор, и изображения соответствующих ему полюсов.


Пусть параллель задана точкой , тогда плоскость параллели пересекает шар по отрезку , перпендикулярному оси . Этот отрезок равен большой оси эллипса, являющегося изображением параллели. Малая ось находится с помощью проектирования точек , на прямую . Наконец, с помощью прямой находятся точки , касания изображения параллели с очерковой окружностью. Точки , разделяют видимую и невидимую части изображения параллели.

При построении эллипса, являющегося изображением параллели, совсем не обязательно строить эллипс, являющийся изображением экватора, которому он подобен. Более того, можно отдельно не выполнять и построение вспомогательного сечения (рис. 65).

Как можно увидеть из рис. 66, в каждом из полушарий можно построить по эллипсу-параллели, которые касаются очерковой окружности только в одной точке. В верхнем полушарии изображения параллелей, лежащих севернее такой параллели будут полностью видимыми, а в нижнем полушарии изображения параллелей, лежащих южнее такой параллели – полностью невидимыми.


Задача. Построить изображение цилиндра, вписанного в шар, если высота цилиндра равна радиусу шара.

Решение. Построим изображение очерковой окружности шара и на ее вертикальном диаметре отметим изображения полюсов (рис. 67).

На этом же диаметре строим изображения центров , оснований цилиндра. Из условия задачи , где – радиус шара, равный радиусу очерковой окружности. Поэтому . Тем самым задано положение параллелей. В соответствии с рассмотренными правилами строим эллипс-изображение верхнего основания. Эллипс, изображающий нижнее основание, можно получить с помощью параллельного переноса на вектор .

В заключение рассмотрим, как строится изображение меридианов, если задано изображение сферы, ее экватора и соответствующих ему полюсов.

Пусть задано изображение точки , через которую проходит изображаемый экватор (рис. 68). В оригинале диаметр перпендикулярен полярной оси , поэтому отрезки , являются сопряженными диаметрами эллипса, изображающего рассматриваемый меридиан. Значит, эллипс – изображение меридиана – по этим сопряженным диаметрам можно построить.

При построениях меридиана «от руки» обычно дополнительно ищут точки , касания эллипса с очерковой окружностью (рис.68). Диаметр очерковой окружности для эллипса будет большой осью, причем , а значит, диаметр сферы параллелен плоскости проекции.

Точки и можно найти из следующих соображений. Построим диаметр эллипса-экватора, сопряженный диаметру . В оригинале , , поэтому диаметр перпендикулярен плоскости рассматриваемого меридиана. Отсюда следует, что , но тогда и (проектирование ортогональное). Точки и разделяют видимую и невидимую части изображения меридиана.

Изображение теней

Иногда для придания чертежу большей наглядности используют тени. Кроме того, построение теней – интересная геометрическая задача, способствующая развитию пространственного мышления, сущность которой состоит в следующем.

Пусть из светящейся точки прямолинейно во всех направлениях распространяются лучи света. Если луч встречает на своем пути непрозрачное тело , то он задерживается на нем и не доходит до некоторого экрана . На последнем при этом образуется темная область , которую называют падающей тенью от тела (рис. 69).

Само тело при этом также оказывается разделенным на две части: освещенную и темную (неосвещенную). Темную часть тела называют его собственной тенью .


Границу падающей тени образуют точки пересечения с экраном лучей, касающихся поверхности тела и образующих световой конус с вершиной точке . Линия, вдоль которой эти лучи касаются поверхности тела, называется линией раздела света и тени.

В случае, представленном на рис. 69, освещение называется факельным , такое же название имеет и соответствующая тень. Подобного рода освещение возникает при использовании источников искусственного освещения: электрической лампочки в комнате, фонаря на улице, пламени свечи и т.п.


Можно считать, что естественные источники (солнце, луна) находятся в бесконечности и лучи от них являются параллельными. Поэтому освещение, производимое пучком параллельных лучей, называют солнечным. Солнечное освещение показано на рис. 70.

Для того чтобы перейти к задачам на построение теней, условимся о том, как будем задавать лучи света на проекционном чертеже. При солнечном освещении такой световой луч можно задать прямой и ее проекцией на основную плоскость (рис. 71). Пусть требуется построить падающую тень от точки на основную плоскость (экран). Чтобы сама точка была определена, необходимо указать ее проекцию на основную плоскость. Построение тени сводится к отысканию точки пересечения прямой, проходящей через точку параллельно , и прямой, проходящей через точку параллельно . Заметим, что при этом отрезок является падающей тенью отрезка .


При факельном освещении на проекционном чертеже надо задать точку, являющуюся световым источником. Она определяется точкой и ее проекцией на основную плоскость (рис. 72). Здесь падающая тень точки – точка пересечения прямых и .

Ясно, что в качестве экрана можно выбирать не только основную плоскость. Наиболее интересные случаи построения теней имеют место именно тогда, когда приходится строить падающие тени на другие плоскости. (Например, падающую тень одного многогранника на поверхность другого.)

Задача 1. На рис. 73 изображены треугольная пирамида, ее высота и параллелепипед. Построить собственные и падающие тени этих непрозрачных фигур при заданном освещении.

Решение. Имеем дело с солнечным освещением. Прежде всего, найдем падающую тень параллелепипеда на основной плоскости . Падающей тенью ребра является отрезок , где , . Аналогично находятся падающие тени , ребер , соответственно. Отсюда следует, что – падающая тень грани , а – падающая тень грани (частично закрыта изображением параллелепипеда). Попутно отметим, что – собственная тень параллелепипеда.


Чтобы найти падающие тени пирамиды на гранях параллелепипеда, найдем сначала ее падающую тень на основной плоскости . Это треугольник ( , ), треугольник будет собственной тенью пирамиды. Проектирующая плоскость прямой пересекает грань параллелепипеда по отрезку . Проведя через точку прямую, параллельную , находим падающую тень вершины на верхнем основании параллелепипеда. Прямые , , проходящие через точку параллельно прямым , соответственно, определяют падающую тень пирамиды на верхнем основании параллелепипеда.

Остается найти падающую тень на боковой грани параллелепипеда. Для этого заметим, что – след плоскости на основной плоскости. Грань пересекает след в точке , а точка принадлежит плоскостям и . Отсюда заключаем, что плоскость пересекает боковое ребро параллелепипеда в точке , и строим падающую тень пирамиды на грани .

На рис. 11 показано построение проекций не­которых точек.

Проекции С" и D " построены на горизонтальной проекции параллели радиуса 0"1", построенной с

помощью про­екции 1 ". Проекция С"" и D "" построены на профильной проекции окружности, проведенной на сфере через проекции C "(D ") так, что плоскость окружности параллельна плоскости проекций.

Проекция Е" является точкой касания эллипса (горизонтальной проекции окружности среза) и экватора сферы. Она построена в про­екционной связи на горизонтальной проекции экватора по фрон­тальной проекции Е".

Горизонтальная проекция М" произвольной точки на линии среза построена с помощью параллели радиуса О"2" , фронтальная проекция которой проходит через проекции М 2 " . Проекция F "является точкой касания эллипса (профильной про­екции окружности среза) и профильной проекции очерка сферы.

Если плоскость, пересекающая сферу, является плоскостью общего положения, то задачу решают способом перемены плоскос­тей проекций. Дополнительную плоскость проекций выбирают так, чтобы обеспечить перпендикулярность ее и секущей плоскости. Это позволяет упростить построение линии пересечения.

12. Построение сечений тора

В примере на рис. 12 показано применение вспомогательных плоскостей γ 1 (γ 1 ") и γ 2 (γ 2 ") , перпендикулярных оси тора, для построения линии пересечения и натурального вида фигуры сечения поверхности тора плоскостью α (α""). Тор на рис.12 имеет два изображения - фронтальную проекцию и половину профильной проекции.

Полуокружность радиуса R 2 (профильная проекция линии пересечения тора вспомогательной

плоскостью γ 2 ) касается проекции плоскости α(следа α""). Тем самым определяются профильная проекция 3"" и по ней фронтальная проекция 3"" одной из точек проекции искомой линии пересечения. Полуокружность радиуса R 1 - профильная проекция линии пересечения тора вспомогательной плоскостью γ 1 . Она пересекает профильную проекцию плоскости α (след α"") в двух точках 5"" и 7"" - профильных проекциях точек линии пересечения. Проводя аналогичные пост­роения, можно получить необходимое количество проекций точек для искомой линии пересечения. Используем найденные точки для построения натурального вида фигуры сечения. Фигура сечения тора плоскостью, параллельной его оси, имеет оси и центр симметрии. При ее построении использованы расстояния l 1 и l 2 на фронтальной проекции для нанесения точек 5 0 , 7 0 и 3 0 .

Точки 6 0 , 8 0 и 4 0 построены как симметричные. Построенная кривая пересечения поверхности тора плоскостью выражается ал­гебраическим уравнением 4-го порядка.

Кривые пересечения тора с плоскостью, параллельной оси, приведены на рис.12 внизу. Они имеют общее название - кривые Персея (Персей - геометр Древней Греции). Это кривые четвертого порядка. Вид кривых зависит от величины расстояния от секущей плоскости до оси тора.

Шара до плоскости равно радиусу плоскости, то плоскость касается шара только в одной точке, и площадь сечения будет равна нулю, то есть если b = R, то S = 0. Если b = 0, то секущая плоскость проходит через центр шара. В этом случае сечение будет представлять собой круг, радиус которого совпадает с радиусом шара. Площадь этого круга будет, согласно формуле, равна S = πR^2.

Эти два крайних случая дают границы, между которыми всегда будет лежать искомая площадь: 0 < S < πR^2. При этом любое сечение шара плоскостью всегда является кругом. Следовательно, задача сводится к тому, чтобы найти радиус окружности сечения. Тогда площадь этого сечения вычисляется по формуле площади круга.

Поскольку расстояние от точки до плоскости определяется как длина отрезка, перпендикулярного плоскости и начинающегося в точке, второй конец этого отрезка будет совпадать с окружности сечения. Такой вывод вытекает из определения шара: очевидно, что все точки окружности сечения принадлежат сфере, а следовательно, лежат на равном расстоянии от центра шара. Это значит, что окружности сечения может считаться вершиной прямоугольного треугольника, гипотенузой которого служит радиус шара, одним из - перпендикулярный отрезок, соединяющий центр шара с плоскостью, а вторым катетом - радиус окружности сечения.

Из трех сторон этого треугольника заданы два - радиус шара R и расстояние b, то есть гипотенуза . По теореме Пифагора длина второго катета должна быть равна √(R^2 - b^2). Это и есть радиус окружности сечения. Подставляя найденное значение в формулу площади круга, легко к выводу, что площадь сечения шара плоскостью равна:S = π(R^2 - b^2).В частных случаях, когда b = R или b = 0, выведенная полностью согласуется с уже найденными результатами.

Видео по теме

Источники:

  • сечение шара плоскостью

Все планеты солнечной системы имеют форму шара . Кроме того, шарообразную или близкую к таковой форму имеют и многие объекты, созданные человеком, включая детали технических устройств. Шар, как и любое тело вращения, имеет ось, которая совпадает с диаметром. Однако это не единственное важное свойство шара . Ниже рассмотрены основные свойства этой геометрической фигуры и способ нахождения ее площади.

Инструкция

Если взять или круг и провернуть его вокруг своей оси, получится тело, называемое шаром. Иными словами, шаром называется тело, ограниченное сферой. Сфера представляет собой оболочку шара , и ее окружность. От шара она отличается тем, что является полой. Ось как у шара , так и у сферы совпадает с диаметром и проходит через центр. Радиусом шара называется отрезок, проложенный от его центра до любой внешней точки. В противоположность сфере, сечения шара представляют собой круги. Форму, близкую к шарообразной, имеет большинство и небесных тел. В разных точках шара имеются одинаковые по форме, но неодинаковые по величине, так называемые сечения - круги разной площади.

Шар и сфера - взаимозаменяемые тела, в отличие от конуса, несмотря на то, что также является телом вращения. Сферические поверхности всегда в своем сечении образуют окружность, независимо от того, как именно она - по горизонтали или по вертикали. Коническая же поверхность получается лишь при вращении треугольника вдоль его оси, перпендикулярной основанию. Поэтому конус, в отличие от шара , и не считается взаимозаменяемым телом вращения.

Самый большой из возможных кругов получается при сечении шара , проходящей через центр О. Все круги, которые через центр О, пересекаются между собой в одном диаметре. Радиус всегда равен половине диаметра. Через две точки A и B, располагающиеся в любом месте поверхности шара , может проходить бесконечное количество кругов или окружностей. Именно по этой причине через

Представляет плоскую кривую - окружность, принадлежащую секущей плоскости.
Построить сечение сферы плоскостью общего положения β

Так как секущая плоскость общего положения, то эта окружность проецируется на плоскости проекций в виде эллипсов. Для построения эллипса необходимо знать размеры эллипса по его осям большой и малой.
Для тел вращения, к каковым относят цилиндр, конус и сферу, линия сечения может быть построена с характерными точками кривой к которым относятся:
- точки в которых меняется знак видимости;
- точки в которых ее координаты принимают максимальные и минимальные значения:
- x max ; x min ;
- y max ; y min ;
- z max ; z min ;
Использование характерных точек позволяет выполнить более точное построение линии пересечения поверхности вращения и плоскости.

Решение задачи на сечение сферы плоскостью значительно упрощается, если секущая плоскость занимает проецирующее положение.

Способом перемены плоскостей проекций переведем плоскость β из общего положения в частное - фронтально-проецирующее. На фронтальной плоскости проекций V 1 построим след плоскости β и проекцию шара. На следе плоскости β V берем произвольную точку 3" замеряем ее удаление от плоскости проекций H и откладываем его по линии связи уже на плоскости V 1 , получая точку 3" 1 . Через нее и пройдет след. Линия сечения шара - точки A" 1 , B" 1 совпадает здесь со следом плоскости. Далее на фронтальной плоскости проекций V 1 построим центр окружности сечения - точку C" 1 которую получим восстановив перпендикуляр из центра шара (точка 0" 1 ) к [A" 1 B" 1 ] на их пересечении. Далее включаем обратное проецирование: через точки A" 1 , B" 1 и C" 1 проводим горизонтали h принадлежащие плоскости β , и на плоскости проекций H через центр шара проводим вспомогательную горизонтально-проецирующую плоскость γ 1 . Горизонтальный след плоскости γ 1 пресечет проекцию горизонтали h и определит в этом месте точку C` - центра окружности сечения. Горизонталь h` пересекает проекцию шара в точках D` и E` , определяя тем самым действительную величину отрезка [DE ] - большой оси эллипса. Аналогично строятся точки A` и B` , определяющие величину отрезка [A`B` ] - малой оси эллипса.

Проекции большой и малой оси эллипса на горизонтальную плоскость проекции H найдены, а это означает что эллипс - проекция окружности сечения на H может быть построен, смотри статью: Окружность

Повторим те же действия на для фронтальной плоскости проекций V и построим другой эллипс - проекцию окружности сечения на V .

Для нахождения точек указывающих границы видимости горизонтальной проекции окружности сечения

проводим через центр шара фронтально-проецирующую плоскость γ 2 V β по горизонтали h(h`, h") . Линия h` пересекается с горизонтальной проекцией окружности сечения по точкам 5,6 указывающим границу видимости. Точки окружности сечения расположенные на фронтальной проекции ниже следа плоскости γ 2 , на горизонтальной плоскости проекции H 5`, 6` ] - и будут на ней невидимы.

Для нахождения точек указывающих границы видимости фронтальной проекции окружности сечения. Проводим через центр шара горизонтально-проецирующую плоскость γ 1 H , которая пересечет плоскость β по фронтали f(f`, f") . Линия f" пересекается с фронтальной проекцией окружности сечения по точкам 7", 8" указывающим границу видимости. Точки окружности сечения расположенные на горизонтальной проекции выше следа плоскости γ 1 , на фронтальной плоскости проекции V будут располагаться слева от отрезка [7", 8" ] - и будут на ней невидимы.