18.02.2019

Способ преобразования электрической энергии в тепловую и создания теплообмена. Как происходит преобразование тепловой энергии в электрическую


Пути прямого преобразования энергии ядерного деления в электрическую пока не найдены. Мы ещё не можем обойтись без промежуточного звена - тепловой машины. Поскольку её КПД всегда меньше единицы, „отработанное“ тепло нужно куда-то девать. На земле, в воде и в воздухе с этим проблем нет. В космосе же существует только один путь - тепловое излучение. Таким образом, КАЭС не может обойтись без „холодильника-излучателя“. Плотность же излучения пропорциональна четвёртой степени абсолютной температуры, поэтому температура холодильника-излучателя должна быть как можно более высокой. Тогда удастся сократить площадь излучающей поверхности и соответственно массу энергетической установки. У нас появилась идея использовать „прямое“ преобразование ядерного тепла в электричество, без турбины и генератора, что казалось более надёжным при длительной работе в области высоких температур.

Организатор и первый директор Физико-технического института Абрам Федорович Иоффе. 1952 год.

Из литературы мы знали о работах А.Ф. Иоффе основателя советской школы технической физики, пионера в исследовании полупроводников в СССР. Мало кто теперь помнит о разработанных им источниках тока, применявшихся в годы Великой Отечественной войны. Тогда не один партизанский отряд имел связь с Большой землёй благодаря „керосиновым“ ТЭГам - термоэлектрогенераторам Иоффе. „Венец“ из ТЭГов (он представлял собой набор полупроводниковых элементов) надевался на керосиновую лампу, а его провода подсоединялись к радиоаппаратуре. „Горячие“ концы элементов нагревались пламенем керосиновой лампы, „холодные“ - остывали на воздухе. Поток тепла, проходя через полупроводник, порождал электродвижущую силу, которой хватало для сеанса связи, а в промежутках между ними ТЭГ заряжал аккумулятор. Когда через десять лет после Победы мы побывали на московском заводе ТЭГов, оказалось, что они ещё находят сбыт. У многих деревенских жителей были тогда экономичные радиоприемники „Родина“ на лампах прямого накала, работающие от батареи. Вместо них зачастую использовали ТЭГи.

Беда керосинового ТЭГа - его низкий КПД (всего около 3,5%) и невысокая предельная температура (350°К). Но простота и надёжность этих приборов привлекали разработчиков. Так, полупроводниковые преобразователи, разработанные группой И.Г. Гвердцители в Сухумском физико-техническом институте, нашли применение в космических установках типа „Бук“.

В свое время А.Ф. Иоффе предложил ещё один термоэмиссионный преобразователь - диод в вакууме. Принцип его действия следующий: нагретый катод испускает электроны, часть их, преодолевающая потенциал анода, совершает работу. От этого прибора ожидали значительно большего КПД (20–25%) при рабочей температуре выше 1000°К. Кроме того, в отличие от полупроводника вакуумный диод не боится нейтронного излучения, и его можно совместить с ядерным реактором. Однако оказалось, что осуществить идею „вакуумного“ преобразователя Иоффе невозможно. Как и в ионном движителе, в вакуумном преобразователе нужно избавиться от объёмного заряда, но на этот раз не ионов, а электронов. А.Ф. Иоффе предполагал использовать в вакуумном преобразователе микронные зазоры между катодом и анодом, что в условиях высоких температур и термических деформаций практически невозможно. Вот тут-то и пригодился цезий: один ион цезия, полученный за счёт поверхностной ионизации на катоде, компенсирует объёмный заряд около 500 электронов! По сути дела, цезиевый преобразователь - это „обращённый“ ионный движитель. Физические процессы в них близки.

Ядерно-энергетическая установка "Бук" с

полупроводниковым реактором-преобразователем для

радиолокационных спутников

Ядерно-энергетическая термоэмиссионная установка "Топаз".

ТЕРМОЭМИССИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ

Имя изобретателя: Прилежаева И.Н.; Бологов П.М.

Имя патентообладателя: Государственный научный центр - Физико-энергетический институт

Адрес для переписки:

Дата начала действия патента: 1996.09.18

Назначение: термоэмиссионное преобразование тепловой энергии в электрическую. Сущность изобретения: в термоэмиссионном преобразователе, содержащем многослойные электроды, как минимум один слой выполнен из дырочного полупроводника, который расположен на поверхности эмиттера, обращенного к коллектору, или на поверхности коллектора, обращенного к эмиттеру. Технический результат: снижение работы выхода электронов на коллекторе, снижение эмиссии электронов с поверхности коллектора, возможность выбора дырочного полупроводника для разного уровня, стабильного в условиях работы преобразователя.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к области энергетики, электроники.

Термоэмиссионные преобразователи (ТЭП) тепла в электроэнергию имеют преимущества перед другими преобразователями в отсутствии движущихся частей и в высокой температуре теплосброса. Эти достоинства привели к использованию ядерных энергетических установок с преобразователем на основе ТЭП в космосе на спутниках Космос-1818 и Космос-1867 в конце 80-х гг. В наземных условиях допустимо использование низкой температуры охлаждения анода и требуется более высокий КПД. Основными путями повышения КПД ТЭП при заданном интервале температур является снижение потерь энергии эмитированных электронов на пути между эмиттером и коллектором и снижение работы выхода на коллекторе Сумма этих потерь превышает обычно 2В при рабочем напряжении ТЭП 0,5В. Пока разработчики ТЭП используют только 1/5 энергии эмитированного электрона. НИР по снижению потерь энергии эмитированного электрона ведутся непрерывно, но снизить работу выхода коллектора ниже 1,7 эВ для ТЭП энергоустановок не удалось. Базовым решением является применение в ТЭП цезия, который образует в межэлектродном зазоре ТЭП плазму, чем компенсирует запирающий объемный заряд эмитированных электронов, сорбируется на эмиттере и коллекторе, что позволяет поддерживать работу выхода эмиттера и коллектора в пределах получения энергии с КПД около 10%

В качестве аналога укажем решения по регулированию переходов металл -полупроводник методом легирования тонких слоев Таким методами удается снизить до нуля энергетический барьер между слоями полупроводника и металлом основы эмиттера и коллектора.

В качестве прототипа предлагаемому решению укажем на ТЭП с коллектором на основе ниобия, насыщенным в поверхностном слое кислородом до 1% Сорбция цезия на таком коллекторе проходит в значимой мере через кислород, что понижает работу выхода коллектора до 1,4 эВ и соответственно повышает КПД Недостатком прототипа является неустойчивость состава коллектора из-за перехода кислорода в другие фазы. Поэтому промышленного применения это решение не нашло.

Предлагаемое решение позволяет снизить работу выхода коллектора введением тонкого полупроводникового слоя, устойчивого в условиях работы ТЭП. Применение полупроводниковых слоев позволяет регулировать работу выхода в широких пределах и обеспечит малые электрические потери при протекании тока по направлению нормали к слою полупроводника. Тонкий слой полупроводника должен обладать стабильностью в условиях работы и иметь химическое сродство к электронам.

Преимуществами предлагаемого ТЭП перед известными являются:

снижение работы выхода электронов на коллекторе,

возможность выбора дырочного полупроводника, стабильного в условиях ТЭП, для разного уровня температур с оптимизацией в зоне до 1300 K на эмиттере,

снижение обратной эмиссии с поверхности коллектора,

отсутствие короткого замыкания при касании эмиттера и коллектора.

Пример реализации устройства (см. чертеж). На поверхность металлического коллектора из молибдена 4 со стороны межэлектродного зазора нанесен слой алмаза 3, легированного акцепторной примесью бора до 10(20) ат/см3, что обеспечивает вхождение уровня Ферми в валентную зону полупроводника. Эмиттер 1 выполнен из вольфрама, тонкий слой 2 выполнен из дырочного полупроводника. Межэлектродный зазор выполнен цезием при давлении около 1 тор. Температура эмиттера до 2000 K температура коллектора до 1000 K. Применение дырочного полупроводника на основе алмаза оправдано относительно других возможных решений его высокой стабильностью при высоких температурах При случайном касании электродов замыкание отсутствует из-за отсутствия электронной проводимости в дырочном полупроводнике. Перенос металла с эмиттера (или нанесение слоя при изготовлении) ограничивают радиусом Дебая

Пример реализации устройства с натриевым (или цезиевым) бета -глиноземом. Устройство по фигуре имеет покрытие электродов из бета-глинозема. В условиях избытка кислорода и недостатка щелочного металла бета-глинозем приобретает свойства дырочного полупроводника. Рабочие температуры для глинозема проектно принимают до 1600 K. Пленка бета-глинозема 3 нанесена на коллектор 4. В межэлектродном зазоре имеется свободный кислород и малое количество щелочного металла, но достаточное для образования монослоя (пленочный электрод) на электродах. Кислород не соединяется с натрием (цезием) при температурах выше 800 K, что обеспечит покрытие эмиттера 1 пленкой щелочного металла. Отсутствие значимого давления паров щелочного металла в объеме ТЭП (очень низкое давление щелочного металла, область слева от минимума кривой Пашена) чрезвычайно важно для работы мощных батарей ТЭП, так как позволит поднять рабочее напряжение на батарее за счет высокого пробивного напряжения при низком давлении паров щелочного металла. Батареи с мощностью более 50 кВт требуют напряжение более 100 В, что невозможно достичь в парах цезия при давлении 1-3 тора, необходима "сухая электроизоляция". Применение глинозема и избыточного кислорода в ТЭП делает сухим слой изоляции ТЭП относительно корпуса батареи. Наличие щелочного пара с давлением около тора в ТЭП требует введения второго слоя сухой изоляции и радикально усложняет батарею ТЭП.

Ядерные энергетические установки.

Ядерные ракетные двигатели

Ядерные энергетические установки с термоэлектрическими генераторами

Начиная с начала шестидесятых годов, достаточно широкий размах в СССР, США и ряде других стран получили работы по новым способам получения электрической энергии и, в частности работы по непосредственному преобразованию тепловой энергии в электрическую на основе термоэлектрических и термоэмиссионных преобразователей.

Интерес к этим работам обусловлен тем, что подобные методы преобразования энергии принципиально упрощают схему установок, исключают промежуточные этапы превращения энергии и позволяют создать компактные и лёгкие энергетические установки.

Вместе с тем, использование ядерных источников энергии на космических аппаратах сопряжено с решением большого комплекса проблем обеспечения безопасности. Первый опыт решения этих проблем в нашей стране был получен при запуске в космос КА с радиоизотопными источниками энергии.

Разработка радиоизотопных генераторов проводилась в России с начала 60-х годов. В сентябре 1965 году впервые в России в составе двух связных КА "Стрела-1" (3.09.1965 г. - "Космос-84"; 18.09.1965 г. - "Космос-90") в космос были запущены радиоизотопные термоэлектрические генераторы (РИТЭГ) "Орион-1" электрической мощностью 20 Вт. Вес РИТЭГ составлял 14,8 кг, расчётный ресурс - 4 месяца. Ампулы РИТЭГ, содержащие полоний-210, были сконструированы в соответствии с принципом гарантированного сохранения целостности и герметичности при всех авариях. Этот принцип оправдал себя при авариях ракет-носителей в 1969 году, когда, несмотря на полное разрушение объектов, топливный блок, содержащий 25000 кюри полония-210, остался герметичным.

В последующие годы проводились работы, направленные на повышение мощности и ресурса РИТЭГ для луноходов и КА дальнего космоса. Разработанные конструкции РИТЭГ отличались между собой применяемыми изотопами, термоэлектрическими материалами, конструктивными формами и т.п. Это значительно усложняло и удорожало создание подобных ЭУ.

Сравнительно низкая энергоемкость, высокая стоимость РИТЭГ, сложности с решением проблем использования РИТЭГ в космосе, успехи в разработке ЭУ на основе ядерного реактора явились причиной прекращения работ по РИТЭГ для космоса.

Использование термоэлектрических и термоэмиссионных преобразователей энергии в сочетание с ядерными реакторами позволило создать принципиально новый тип установок, в которых источник тепловой энергии - ядерный реактор и преобразователь тепловой энергии в электрическую объединены в единый агрегат - реактор-преобразователь.

Для экспериментальной проверки возможности создания малогабаритного реактора-преобразователя с прямым преобразованием тепловой энергии в электрическую в СССР, в институте атомной энергии имени И.В.Курчатова в сотрудничестве с Сухумским физико-техническим институтом, Харьковским физико-техническим институтом, Подольским научно-исследовательским технологическим институтом в 1964 г. была сооружена и прошла полный цикл ядерных энергетических испытаний экспериментальная установка "Ромашка". Эта установка являлась высокотемпературным реактором-преобразователем на быстрых нейтронах, в котором тепло, выделяемое в активной зоне, передавалось за счёт теплопроводности материалов на расположенный на внешней поверхности отражателя термоэлектрический преобразователь, вырабатывавший до 500 Вт электрической энергии. Неиспользованное тепло с преобразователя излучалось в окружающее пространство ребристым холодильником-излучателем. Выведенный на мощность 14 августа 1964 года реактор-преобразователь "Ромашка" успешно проработал ~15000 часов, выработал при этом - 6100 кВт.час электроэнергии.

Пуск и успешные испытания установки "Ромашка" продемонстрировали, что в Советском Союзе впервые в мире создан работающий высокотемпературный ядерный реактор-преобразователь, который позволяет непосредственно получать электроэнергию без участия каких-либо движущихся рабочих тел и механизмов и экспериментально показана его способность к длительной работе. Последующие разделка и изучение состояния элементов установки "Ромашка" показали, что достигнутые параметры и ресурс не являются предельными и могут быть повышены за счёт некоторых усовершенствований конструкции и, в частности, использования вместо термоэлектрического преобразователя энергии плоских модульных термоэмиссионных элементов, располагаемых на границе активной зоны и радиального отражателя.

Выполненный комплекс работ с установкой "Ромашка" показал её абсолютную надёжность и безопасность. Однако, в связи с тем, что к моменту окончания испытаний была создана ядерная электрическая станция "БЭС-5" значительно большей мощности, дальнейшие испытания установки "Ромашка" были остановлены. На базе установки "Ромашка" была создана опытная установка "Гамма" - прототип автономной транспортируемой АЭС "Елена" электрической мощностью до 500 кВт, предназначенной для энергоснабжения отдаленных районов.

Ядерная энергетическая установка "БЭС-5".

Разработка первой в нашей стране космической ядерной электрической станции "БЭС-5" с гомогенным реактором на быстрых нейтронах и термоэлектрическим генератором (ТЭГ) проводилась в соответствии с Постановлениями ЦК КПСС и СМ СССР N 258-110 от 16.3.1961 г., N 702-295 от 3.7.1962 г. и N 651-244 от 24.8.1965 г. кооперацией организаций-разработчиков ГП "Красная Звезда", ГНЦ "ФЭИ", НТЦ"Исток" НИИ НПО "Луч", РНЦ "Курчатовский институт", ИПУ РАН и др. Станция разрабатывалась для электропитания аппаратуры космического аппарата радиолокационной разведки на участке выведения и в течение всего времени активного существования КА на круговой орбите высотой порядка 260 км. В результате проделанных расчётных, конструкторских и экспериментальных работ к 1970 году были практически решены все принципиальные проблемы по созданию "БЭС-5", генерирующей выходную мощность 2800 Вт, с ресурсом 1080 часов.

В период с 1963 г. по 1969 г. проводилась отработка жидкометаллического контура, испытания безреакторных образцов "БЭС-5" с имитатором ТЭГ и эксплуатационного оборудования, испытания безреакторной "БЭС-5" с действующим ТЭГ. В 1968-1970 г.г. были проведены натурные ресурсные испытания космических ядерных ЭУ "БЭС-5" N 16, 25, 32 с действующим реактором на стенде Ц-14Э. Испытания ядерной энергетической установки (ЯЭУ) N16 прошли успешно, все задачи, поставленные перед испытаниями, были выполнены в полном объёме. Электрическая мощность основной секции ТЭГ за время испытаний (1200 часов) снизилась на 10% и в конце испытаний составила 905 Вт и 1040 Вт при уровнях температуры 6900С и 7150С соответственно. Нейтронно-физические характеристики реактора, снятые на стационарных режимах работы, были стабильны во времени и удовлетворительно совпадали с расчётными значениями и величинами, экспериментально определенными на физических сборках в Физико-энергетическом институте.

Испытания ЯЭУ N25 были прекращены вследствие "закипания" теплоносителя первого контура в зоне реактора из-за недостаточного давления в компенсационных емкостях. После проведения тарировки автономного нейтронного источника по вновь разработанной методике с использованием новой высокоточной аппаратуры испытания "БЭС-5" были продолжены на установке N32. После успешного выхода на номинальный рабочий режим энергоустановки "БЭС-5" N32 на стенде Ц-14Э (ГП "Красная Звезда") был проведён полный цикл полигонных испытаний согласно программе ЛКИ ЯЭУ N31. Положительные результаты испытаний позволили в 3 октября 1970 г. осуществить запуск ЯЭУ "БЭС-5" N31 в составе КА радиолокационной разведки ("Космос-367").

ЯЭУ "БЭС-5" N 31 проработала на орбите 110 минут и была уведена на орбиту "захоронения" по причине "заброса" температуры 1-го контура выше предельно допустимой, вызванной расплавлением активной зоны реактора. По результатам первого запуска были доработаны датчики и логика работы температурного канала управления, а также снижена мощность "прогрева" ЯЭУ со 150% до 115% Nном.

В результате стендовых испытаний и ЛКИ были разработаны:

Надёжная технология сварки и последующего контроля изделия, в том числе термовакуумные испытания, что позволило обеспечить ресурсную отработку изделия до 1500 часов при расчётных температурах и окружающем давлении 10-5 мм.рт.ст. и в течении 1300 часов при работе в радиационных потоках, превышающие натурные;

Методика проведения имитационных (без реактора) тепловых испытаний изделия в вакуумных камерах;

Методика проведения наземных испытаний изделия со снаряженной активной зоной;

Методика проведения полигонных испытаний.

После проведения 9 запусков ЯЭУ "БЭС-5" в 1975 г. была принята на вооружение ВМФ СССР. Всего к мо-менту снятия с эксплуатации ЯЭУ "БЭС-5" (1989 г.) была запущена в космос 31 установка.

За весь период запусков КА с ЯЭУ на борту произошли три наиболее серьезные аварии.

При запуске КА с ЯЭУ "БЭС-5" N51, вследствие выхода из строя двигателя доразгона, КА не был выведен на расчётную орбиту и ЯЭУ с глубоко подкритичным реактором упала в Тихий океан.

Наиболее крупная авария ЯЭУ произошла с КА "Космос-954", запущенным 18 сентября 1977 года. Из-за разгерметизации приборного отсека КА с ЯЭУ "БЭС-5" N58 на борту и выхода из строя датчиков перепада давления второго контура произошёл отказ аппаратуры системы автономного управления, что привело к потере ориентации КА, непрохождению команды на увод ЯЭУ с Земли и отказу системы автоматического увода ЯЭУ. В результате КА с ЯЭУ вошёл в атмосферу и развалился, разбросав тысячи радиоактивных осколков на 100000 км2 в северо-западных районах Канады.

В 1983 году из-за отказа систем КА "Космос-1402", запущенного 30 августа 1982 года, произошло возвращение ЯЭУ в атмосферу Земли, что привело к срабатыванию дублирующей системы радиационной безопасности ЯЭУ, рассеявшей активную зону реактора в атмосфере Земли.

В апреле 1988 года произошла потеря радиосвязи с "Космосом-1900", запущенным 12 декабря 1987 года. Отсутствие связи помешало передать ему команду об уводе ЯЭУ, и до середины сентября 1987 года КА медленно терял высоту, постепенно приближаясь к Земле. К контролю за положением КА были привлечены службы контроля космического пространства США. Только 30 сентября за несколько дней до входа в плотные слои атмосферы, включилась защитная система и спутник был уведён на безопасную стационарную орбиту.

В процессе эксплуатации установки на основании Постановления ЦК КПСС и СМ СССР N 462-138 от 26.5.1975 г. проводились работы по её доработке и модернизации, связанные с повышением радиационной безопасности, увеличением электрической мощности в конце ресурса до 3 кВт и увеличением ресурса до 6-12 месяцев.

Анализ полётных данных показал, что прекращение работы КА с ЯЭУ на борту происходило, как правило, не по вине ЭУ, за исключением "БЭС-5" NN 31, 60, 58, 75 и 76. Анализ отрицательных явлений, имевшихся в процессе функционирования на орбите ЯЭУ (отказы датчиков давления и перепада давления в ЖМК "БЭС-5" N53 (15.5.1974 г., "Космос-651"), N60 (17.10.1976 г., "Космос-860"), N58 (18.09.1977 г., "Космос-954"), а также причин, их вызвавших, привел к необходимости их доработок. Так, начиная с ЯЭУ "БЭС-5" N58, были установлены усовершенствованные исполнительные механизмы привода компенсирующих стержней, антилюфтовые пружины в исполнительных механизмах привода регулирующих стержней, повышено давление газа в блоке гашения (БГ) реактора с 760 до 1500 мм рт.ст. Это позволило повысить надёжность срабатывания основной системы радиационной безопасности ЯЭУ, значительно снизить возмущения реактивности, вызываемые срабатыванием двигателей системы ориентации и стабилизации КА, уменьшить кратковременные выбросы тока ионизационных камер при перестройке задания по нейтронной мощности с 7,5% на 115%, а также более надёжно контролировать герметичность БГ при комплексных проверках на Земле (давление в БГ снижалось до нуля вследствие его негерметичности при выходе на орбиту ЯЭУ N52 (27.12.1973 г., "Космос-626") и N56 (7.04.1975 г., "Космос-724"). В 1985 г. аварийно закончилась работа двух КА вследствие отказов в системе автономного управления ЯЭУ "БЭС-5" N75 и N76 по причине более жёсткого теплового режима эксплуатации прибора ЭП-264. На оставшихся экземплярах ЯЭУ была произведена доработка прибора. После инцидента с КА "Космос-954" над Канадой интенсифицировались работы по бортовым системам обеспечения радиационной безопасности, как основной (ОСРБ), обеспечивающей "увод" ЯЭУ на орбиту "захоронения" высотой 890 км, так и дублирующей (ДСРБ), основанной на выбросе связки ТВЭЛов из корпуса реактора с помощью порохового аккумулятора давления поршневого типа и их последующим аэродинамическим разрушением.

Работоспособность бортовых устройств ДСРБ была подтверждена в наземных условиях и в процессе контрольно-лётных испытаний ЯЭУ N64, запущенной в составе КА "Космос-1176" 29 апреля 1980 года. Все последующие ЯЭУ "БЭС-5" были оснащены ДСРБ.

В связи с модернизацией КА радиолокационной разведки была произведена доработка ЯЭУ, отличающаяся увеличенным до 6 мес. сроком функционирования и электрической мощностью в конце ресурса 2400 Вт. Было изготовлено 3 экз. ЯЭУ. Первый запуск модернизированного варианта ЯЭУ был произведён 14 марта 1988 года в составе КА "Космос-1932". Несмотря на то, что установка нормально отработала по программе полёта дальнейшая эксплуатация ЯЭУ типа "БЭС-5" была прекращена. Оставшийся экземпляр ЯЭУ в 1993 году был доставлен с 5 НИИП на ГП "Красная Звезда" и утилизирован.

Принятие решения о прекращении запуска в космос КА с ЯЭУ на борту было вызвано сравнительно низкими техническими характеристиками ЯЭУ и обострившимся противостоянием международной общественности использованию ядерных объектов в космосе.

Ядерные энергетические установки с термоэмиссионными преобразователями

Ядерные энергетические установки "Топаз"

Параллельно работам по созданию ЯЭУ с термоэлектрическими генераторами проводились работы по ЯЭУ с термоэмиссионными преобразователями, имеющими более высокие технические характеристики.

Работы проводились двумя кооперациями организаций-исполнителей по двум типам установок, отличающихся:

Конструкцией основного элемента ЯЭУ - электрогенерирующего канала (ЭГК);

Конструкцией генератора паров рабочего тела (цезия). В ЯЭУ "Топаз-2" применён генератор фитильного типа, обеспечивающий постоянство расхода независимо от температуры теплоносителя;

ЯЭУ "Топаз-2" предназначена для использования только на радиационно-безопасных орбитах и не имеет системы ликвидации. Доработка её под дублирующую систему обеспечения радиационной безопасности не представляется возможной.

В установке "Топаз-1" (ТЭУ-5) с тепловым реактором-преобразователем и жидкометаллическим теплоносителем (Na-K) имеется 79 ЭГК в каждом из которых скоммутировано 5 термоэмиссионных электрогенерирующих элементов (ЭГЭ) (многоэлементный ЭГК), а в ЯЭУ "Топаз-2" (Енисей) - 37 ЭГК, в каждом из которых только один ЭГЭ (моноэлементный ЭГК).

Конструкция одноэлементного ЭГК позволяет не иметь в активной зоне межэлектродной коммутации, а также выводить газообразные продукты деления из катодного объёма, что предопределяет их большую надёжность и ресурсоспособность; используя тепловые имитаторы, контролировать электрические характеристики ЯЭУ перед стартом до загрузки ядерного топлива; отрабатывать полномасштабные ЭГК и системы преобразования термоэмиссионного реактора-преобразователя (ТРП) в целом с помощью электронагрева, что сокращает затраты средств и времени на экспериментальные работы. Однако одноэлементная конструкция имеет существенный недостаток, заключающийся в том, что при одних и тех же электрических мощностях ток на выходе одноэлементного ЭГК в 2-3 раза больше, чем у многоэлементного, и для снижения омических потерь требуются большие толщины электродов. Этот недостаток ЭГК одноэлементной конструкции в значительной мере определяется удельной электрической мощностью, снимаемой с поверхности катода, и практически в конкретных конструкциях начинает существенно сказываться при удельной электрической мощности выше 2 Вт/см2 для ТРП с замедлителем и более 5 Вт/см2 для ТРП на быстрых нейтронах.

ЯЭУ "Топаз-1" разрабатывалась в соответствии с постановлением ЦК КПСС и Совета Министров СССР N 702-295 от 3.07.1962 г. для КА радиолокационной разведки кооперацией организаций: головной разработчик - ГП "Красная Звезда", научный руководитель - ГНЦ "ФЭИ", соисполнители - НИИ НПО "Луч" и др.

ЯЭУ "Топаз-2" разрабатывалась в соответствии с постановлением ЦК КПСС и Совета Министров СССР N 715-240 от 21.07.1967 г. для КА системы непосредственного телевизионного вещания из космоса кооперацией организаций: головной разработчик - "Энерговак-ЦКБМ", научный руководитель - РНЦ "Курчатовский институт", соисполнители - НИИ НПО "Луч" и др.

При разработке ЯЭУ "Топаз-1" был выполнен большой комплекс экспериментальных исследований отдельных узлов, агрегатов, теплофизических прототипов ТРП и тепловых имитаторов установки в целом. В ГНЦ "ФЭИ" на реакторе АМ проведены испытания более 50 ЭГК, показавшие их работоспособность в течении заданного ресурса. Наибольшая продолжительность реакторных испытаний ЭГК штатной конструкции (КЭТ-49) составила более 5000 часов при средней удельной мощности 2,5 Вт/см2 и максимальной температуре катодов 16000С. Первые полномасштабные наземные энергетические испытания ядерного прототипа ЯЭУ "Топаз-1" были проведены на стенде ГНЦ "ФЭИ" в 1970 г. Изделие было выведено на электрическую мощность 10 кВт. Испытания продолжались 150 часов, после чего были приостановлены из-за утечки теплоносителя ЖМК. Всего были испытаны 4 ядерных прототипов ЯЭУ "Топаз-1".

Результаты наземных комплексных испытаний послужили основанием для определения в Решении Комиссии Президиума СМ СССР по ВПВ N 342 от 8.12.1976 г. возможного срока проведения лётно-конструкторских испытаний в 1979-1980 г.г. ЯЭУ "Топаз-1" в составе экспериментального КА "Плазма". Однако, отсутствие дублирующей системы радиационной безопасности в составе ЯЭУ привело к необходимости разработки новой модификации КА "Плазма" - КА "Плазма-А" и изменить, в соответствии с решением КП СМ СССР по ВПВ от 23.5.1981 г., сроки и условия проведения ЛКИ: проведение ЛКИ на высокой радиационно-безопасной орбите.

Решением Государственной комиссии при СМ СССР по ВПВ N 58 от 12.02.1986 г. было принято решение о проведении ЛКИ КА "Плазма-А" с ЯЭУ "Топаз-1". К проведению ЛКИ были подготовлены два экземпляра ЯЭУ (N22 и N23), отличающиеся материалом катодов ЭГК: катоды изделия N22 выполнены из молибдена, а N23 - из молибдена, покрытого вольфрамом.

ЯЭУ N22 была запущена на радиационно безопасную стационарную круговую орбиту высотой 800 км 2.02.1987 г. и отработала на орбите в составе КА "Плазма-А" ("Космос-1818") в течении 142 суток. Показано соответствие характеристик ЯЭУ в течении заданного трёхмесячного ресурса.

ЯЭУ N23 была запущена на радиационно безопасную стационарную круговую орбиту высотой 800 км 10.07.1987 г. и отработала на орбите в составе КА "Плазма-А" (Космос-1867) в течении 343 суток. Показано соответствие характеристик ЯЭУ в течении полугода работы. В дальнейшем в течении последующего полугода мощность ЯЭУ плавно снижалась вследствие деградационных процессов в РП, но была достаточна для питания всех систем КА (в конце стационарной работы составила 2,73 кВт).

Прекращение работы ЯЭУ в обоих случаях было вызвано, в основном, окончанием запасов рабочего тела (цезия) и выделением водорода из полости замедлителя, явившегося катализатором деградационных процессов в РП. Замена комплекта ЭГК с эмиттерными узлами из монокристаллического молибдена в ЯЭУ N22 на комплект ЭГК с вольфрамовыми покрытиями в ЯЭУ N23 привело к увеличению к.п.д. ЯЭУ в 1,05-1,07 раза.

Параллельно работам с ЯЭУ "Топаз-1" проводились работы по созданию ЯЭУ "Топаз-2". В ходе работ было изготовлено и испытано более 18 полномасштабных головных блоков энергоустановки, 7 из которых (Я-20, Я-23, Э-31, Я-24, Я-81, Я-82, Э-38) прошли ядерные энергетические испытания. Ресурсные ядерно-энергетические испытания первых опытных образцов (Я-20, Я-23, Э-31, Я-24) показали, что выбранная конструкция ЭГК не обеспечивает требований по ресурсу. Обнаружилось увеличение диаметра катодов ЭГК вследствие распухания тепловыделяющих сердечников под действием осколков деления, что привело к коротким замыканиям отдельных ЭГК в процессе испытаний и падению суммарной электрической мощности РП. Было также установлено, что вследствие поверхностных изменений свойств электродной пары катод-анод и увеличения приведенного коэффициента черноты ресурсное уменьшение электрической мощности ЭГК составило 3% за 1000 часов.

Для устранения перечисленных конструктивных недостатков НИИ НПО "Луч" был разработан и испытан усовершенствованный ЭГК, в котором были реализованы следующие конструктивные и технологические решения:

В МЭЗ введены новые фиксаторы из окиси скандия, обладающие большей стойкостью в парах цезия по сравнению с фиксаторами из окиси алюминия;

Улучшена технология нанесения вольфрамового покрытия на эмиттер для предотвращения отслоения покрытия (переход на хлоридную технологию нанесения монокристалического покрытия);

Увеличено отверстие в топливе на всю длину активной зоны и увеличен диаметр отверстия для снижения распухания топлива;

Увеличен МЭЗ;

В эмиттер введён монокристалл молибдена, легированного ниобием.

В процессе проведения тепловых испытаний с электронагревом одного из образцов усовершенствованного ЭГК достигнут ресурс более 22500 часов.

Кроме того, с целью доведения ресурса работы установки до 1,5 лет, была создана новая модернизированная конструкция реактора с увеличенным числом ЭГК в активной зоне (с 31 до 37). Было изготовлено 10 экземпляров головных блоков такой ЯЭУ (В-71 - для холодных и динамических испытаний с последующими электроэнергетическими испытаниями на комплексном стенде "Байкал-1"; Я-81, Э-37, Я-82 - для ЯЭИ продолжительностью до 1,5 лет; Э-39, Э-40, Э-41- для ЛКИ, Э-38-как резервный; Э-43, Э-44). При испытаниях образца Я-24 был достигнут небывалый в отечественной и зарубежной практике ресурс проведения ЯЭИ полномасштабного опытного образца космической ЯЭУ - 12500 часов.

В связи с прекращением работ по КА, для которого предназначалась ЯЭУ "Топаз-2", работы по ЯЭУ были прекращены на стадии наземных испытаний.

Российско-американское сотрудничество по ЯЭУ типа "Топаз".

Новым этапом в деятельности российских организаций явилось российско-американское сотрудничество в области космической ядерной энергетики.

Первые официальные материалы с краткой информацией об энергетической установке "БЭС-5" были переданы американской стороне в связи с инцидентом со спутником "Космос-954", имевшем место над Канадой в 1978 году, затем подробные сведения об установке передавались во время инцидентов со спутниками "Космос-1402" в 1983 г. и "Космос-1900" - в 1988 году.

Большой интерес у американских специалистов был вызван сообщениями академика Пономарева-Степнова Н.Н. и директора ГП "Красная Звезда" Грязнова Г.М. о результатах испытаний ЯЭУ "Топаз" на международном симпозиуме в г. Альбукерке (США) в 1989 г. А в апреле 1989 г. в ИАЭ им. И.В.Курчатова состоялись переговоры с представителями фирмы Space Power Inc. (SPI) советских разработчиков ЯЭУ (ИАЭ им. И.В.Курчатова, НПО "Красная Звезда", ЦКБМ, НПО "Луч", ФЭИ). Переговоры касались возможности сотрудничества в области космических ядерных энергетических установок для гражданского коммерческого применения и использования для этих целей имеющегося в СССР опыта и задела по созданию и натурным испытаниям космических термоэмиссионных ядерных энергетических установок. В процессе переговоров были обсуждены возможные области гражданского коммерческого использования таких ЯЭУ в качестве альтернативы солнечным энергоустановкам.

Переданные американской стороне материалы, связанные с успешными испытаниями в космосе ЯЭУ "Тополь" ("Топаз-1") в 1977-1978 гг., а также посещение американскими специалистами российских фирм убедили специалистов США в бесспорном приоритете России в этой области, в связи с чем ряд американских фирм проявили заинтересованность в научном и коммерческом использовании для мирных целей имеющегося в России задела по термоэмиссионным ЯЭУ.

В январе-марте 1991 г. был проведён демонстрационный показ макета ЯЭУ "Топаз-2" (без ядерного топлива) на VIII Симпозиуме США по космической ядерной энергетике (г. Альбукерк) и на советско-американском научно-техническом Симпозиуме и выставке "Наука-Космос-Конверсия" при Мерилендском университете. Демонстрация вызвала большой интерес специалистов и общественности, высоко оценена как с точки зрения технологических достижений СССР, так и готовности СССР участвовать в международном сотрудничестве в этой области.

Основные разработчики установки "Топаз-2" - ЦКБМ, РНЦ "КИ" и НИИ НПО "Луч" совместно с НИИТП и ГМП "НП Энерготех" с российской стороны и фирмой International Scientific Products (ISP) с американской стороны учредили Совместное российско-американское предприятие "Интернациональные энергетические технологии" (СП "ИНЕРТЕК"). На первом этапе своей деятельности было предложено провести демонстрационные испытания в США на стендах с электронагревом экспериментального образца и компонентов установки "Топаз-2" без ядерного топлива. Кабинетом Министров СССР (N ПП-15495 от 16.05.1991 г.) было дано согласие на проведение испытаний. Проведение работ было поддержано специальными решениями администрации США.

Для проведения испытаний американской стороне в период 1991-1992 года были переданы два образца головного блока ЯЭУ "Топаз-2" - В-71 (рабочий) и Я-21У (резервный), ранее испытанные в России, и испытательный стенд "Байкал".

Первый этап испытаний проводился в ноябре 1992 г. силами совместного предприятия "ИНЕРТЕК" по кон-тракту N СП-1145/5474, заключенному с ISP с участием специалистов группы TSET (Termionic System Evaluation Test). На стенде "Байкал" в г. Альбукерке (США) были проведены испытания изделия B-71 в объёме двух полных проверочных циклов "пуск-работа-останов" с целью подтверждения заданных параметров. Испытания образца установки и её отдельного ЭГК выполнены в полном объёме и успешно: подтверждена их работоспособность, получены характеристики, заданные Программой испытаний, проведено обучение американского персонала. "Проведенный прогноз полученных характеристик показал, что в штатных условиях установка "Топаз-2" с характеристиками В-71 может обеспечить электрическую мощность на клеммах рабочей секции реактора 4,5-6,0 кВт при температуре теплоносителя на выходе из реактора до 5700С" (из отчёта испытаний).

Целью второго этапа испытаний было получение экспериментальной информации по установке "Топаз-2" как объекта управления и источника электроэнергии при испытаниях с электронагревом в условиях вакуумной камеры и обучение американских специалистов. Испытания проводит группа TSET с участием российских специалистов, американских и российских исследователей.

После успешного проведения первого этапа работ американской стороной было предложено проведение подготовки лётных демонстрационных испытаний установки "Топаз-2" совместно с электродвигательным модулем на основе различного типа электрореактивных двигателей на космическом аппарате США и подписан контракт на участие российских предприятий в разработке космических ядерных термоэмиссионных установок повышенной (до 40 кВт) электрической мощности. Функционирование ЯЭУ должно быть осуществлено на высоких орбитах, на которых полностью гарантируется радиационная безопасность населению Земли. Финансирование этих работ будет осуществляется американской стороной из правительственных источников.

Для проведения лётных испытаний установки "Топаз-2" в составе американского космического аппарата разработчики установки в 1994-1995 г.г. поставили в США четыре экспериментальных образца установки "Топаз-2" (из них образцы Э-43, Э-44 - для лётных испытаний и Э-40, Э-41 для отработки стыковки с космическим аппаратом). Кроме этого, для наземных испытаний планируется использовать также поставленные ранее в США два экспериментальных образца установки "Топаз-2". Использование установок "Топаз-2" для лётных испытаний запланировано на условиях возврата (кроме запущенных в космос) установок "Топаз-2" после выполнения программы в Россию без разделки и исключения прямого использования установок в военных целях.

Несмотря на то, что в связи с резким сокращением финансирования работ в области космической ядерной энергетики были прекращены ОКР по созданию ЯЭУ, деятельность организаций-разработчиков с 1992 года направлена, в основном, на сохранение достигнутого научно-технического задела, стендовой базы и проведение работ по отработке основных элементов ЯЭУ. Вместе с тем, положительные результаты испытаний ЯЭУ "Топаз-1" и "Топаз-2" доказали принципиальную возможность создания в космосе энергетических систем мощностью 10-100 и более киловатт и положили начало разработкам проектов целого ряда термоэмиссионных установок мощностью 10-15, 25, 50 и 100-150 кВт.

Проекты космических ЯЭУ

В период создания ЯЭУ "БЭС" и "Топаз" на их основе было подготовлено ряд проектов установок с улучшенными характеристиками.

Эскизный проект на модифицированную установку ЯЭУ "Топаз-1" был разработан ГП "Красная Звезда" в соответствии с постановлением КП СМ СССР по ВПВ N 223 от 21.8.1974 г. Эта установка представляла собой форсированный вариант ЯЭУ "Топаз-1". Увеличение мощности достигнуто за счёт введения одного дополнительного ЭГК, применения индукционного электромагнитного насоса вместо кондукционного, введения охранных электродов в ЭГК. Установка в отличии от ЯЭУ "Топаз-1" была оснащена дублирующей системой обеспечения безопасности, холодильником-излучателем на тепловых трубах, замкнутой цезиевой системой с регенерацией цезия, оптимизированной схемой электрических коммутаций.

На основе разработок реактора "Ромашка" в 1976 "Энерговак-ЦКБМ" подготовлены технические предложения по термоэлектрической ЯЭУ "Заря-1" для КА оптико-электронной разведки (ОЭР). ЯЭУ "Заря-1" отличается от "БЭС" уровнем электрической мощности (5,8 кВт против 2,9 кВт) и повышенным ресурсом (4320 часов против 1100 часов).

Научно-технический задел в части создания ТЭГ и ТЭП для реакторных ЯЭУ позволил разработать в 1978 г. эскизный проект двух вариантов ЯЭУ "Заря-2" для КА ОЭР электрической мощностью 24 кВт и ресурсом 10000 часов. Включение в ЖМК термоэмиссионной ЯЭУ типа "Топаз-1" термоэлектрического генератора позволило решить проблему быстрого (через 10 минут после прохождения команды на пуск ЯЭУ) обеспечения электроэнергией аппаратуры КА и собственных потребностей установки по сравнению с временем выхода ЯЭУ "Топаз-1" на режим номинальной электрической мощности (через 60 мин.) Одновременно такое решение позволило снизить необходимую емкость аккумуляторных батарей, острый дефицит которой ощущался при создании "Топаз-1". Отличительной особенностью второго варианта ЯЭУ "Заря-2" является то, что высокая выходная мощность обеспечивается применением форсированных ЭГК с охранным электродом.

В 1978 г. ГП "Красная Звезда" разработаны технические предложения на 2 варианта космической ядерной энергодвигательной установки "Заря-3" электрической мощностью 24,4 кВт и ресурсом 1,15 года. Она предназначалась в числе других альтернативных вариантов для создания импульсов тяги коррекции орбиты КА ОЭР и энергообеспечения специальной аппаратуры. Первый вариант является модификацией ЯЭУ "Топаз-1" в части использования РП и ЭГК встроенного типа (аналогично РП установки "Заря-2") и автономного ЖРД. Другой вариант принципиально отличался от ЯЭУ "Топаз-1" наличием реактора на быстрых нейтронах, вынесенных ТЭП с тепловыми трубами и ЖРД, причём ТВЭЛы и ТЭПы были объединены в пароэлектрогенерирующие каналы.

Работы по установкам "Топаз" и "Заря" были прекращены из-за отсутствия их привязки к конкретному КА.

В период 1981-1986 г.г. в России был выполнен большой объём проектно-конструкторских и экспериментальных работ, свидетельствующий о принципиальной возможности увеличения ресурса ЯЭУ до 3-5 лет и электрической мощности до 600 кВт.

В результате этих проработок был разработан типоразмерный ряд термоэмиссионных РП на основе ЭГК прототипа ЭГК ЯЭУ "Топаз-1" мощностью 10-15, 25, 50 и 100-150 кВт.Разработка ядерных энергетических установок типа "Акация" и ядерного электроракетного двигателя "Геркулес"

ТЕРМОЭМИССИОННЫЕ ПРЕОБРАЗОВАТЕЛИ - ПУТЬ В ЭНЕРГЕТИКУ БУДУЩЕГО

Информационное агентство “ВРАТА-ЕКАТЕРИНБУРГ” распространила информацию о создании термоэмиссионного преобразователя тепловой энергии в электрическую (ТЭП) с очень высоким коэффициентом преобразования (КП) – до 80-82%. Вначале мне показалось это малоправдоподобным, но, заказав у разработчиков техническое описание преобразователя и ознакомившись с ним, автор сделал вывод о вполне реальной возможности достижения такого КП на практике, а в составе агрегата КП может достигать величины 95-97%.

Исходя из выше сказанного, мне хотелось бы порассуждать в этой статье о перспективных схемах применения ТЭП в традиционной и нетрадиционной энергетике.

При ныне существующей традиционной схеме энергообеспечения к каждому жилому объекту подводится несколько видов энергии: электроэнергия, теплоэнергия, сетевой газ, горячая вода.

Разместив на каждом жилом объекте микроТЭЦ на базе ТЭП мы перейдем к прогрессивной схеме децетрализованного энергообеспечения с высоким КИТ. Данная схема работает следующим образом: сетевой газ поступает в микроТЭЦ, где он сжигается во внешней топке. Нагретые в топке до температуры 1650-1700 о С газы поступают в ТЭП, где происходит прямое преобразование тепловой энергии в электрическую (постоянного напряжения). Далее, охлажденные до температуры 250-300 о С газы поступают в теплообменник, где нагревают холодную водопроводную воду для нужд горячего водоснабжения объекта. При этом 70-75% энергии газов расходуется на выработку электроэнергии и 25-20% - на производство горячей воды. Основная часть электроэнергии постоянного напряжения расходуется на отопление объекта, освещение, электроплиты, некоторые бытовые приборы, работающие на постоянном токе (например, холодильники), часть ее, пройдя через автономный инвертор, и, получив параметры стандартной сети, расходуется на бытовые приборы, работающие на переменном токе. В перспективе всю бытовую технику можно перевести на питание постоянным током, что значительно снизит вредное влияние на человека электромагнитного излучения. Для повышения надежности энергообеспечения необходимо иметь запас жидкого топлива или газгольдер с сжиженным газом. Убрав из квартир газопроводы и газовые плиты и разместив микроТЭЦ на крыше здания, можно резко увеличить безопасность использования сетевого газа.

Установка крышных микроТЭЦ на жилых объектах позволит подводить к ним только один вид энергоносителя – сетевой природный газ (в перспективе – водород), а сэкономленные деньги можно вложить в изготовление газопроводов из современных высокопрочных композитных материалов.

Теперь поговорим немного об экономике данного предложения.

Удельные капитальные затраты на автономную СИСТЕМУ энергообеспечения жилого объекта, включающую в себя ТЭП, теплообменник, инвертор, систему аварийного топливопитания, систему электроотопления и т.д. составят по прикидочным расчетам около

10 000 руб/кВт. Средняя отпускная цена на электроэнергию составит около 15 коп/кВтчас.

Удельные капитальные затраты на централизованную СИСТЕМУ энергообеспечения жилого объекта, включающую в себя цетрализованный источник тепловой энергии и горячей воды, теплотрассы, электрогенерирующие и трансформирующие объекты, ЛЭП и т.д. составят по некоторым данным по самым скромным прикидкам около 15 000 руб/кВт. Плата за электроэнергию для населения уже сейчас составляет от 30 до 60 коп за кВтчас, при этом эти деньги не покрывают не только полную отпускную цену, но даже себестоимость покрывают лишь частично.

Установка подобных автономных систем энергообеспечения на промышленных объектах также сулит значительную выгоду.

Если же оставить на жилых и промышленных объектах традиционную водяную систему отопления, а в микроТЭЦ на базе ТЭП установить гидродинамические преобразователи энергии с коэффициентом преобразования 300% и выше, то это позволит снизить топливные затраты на отопительные нужды в 2-2,5 раза и в целом расход газа на энергетические нужды в 3,5-4 раза.

Это, в свою очередь, увеличивает срок исчерпания природных запасов газа на десятки лет, что дает дополнительную временную фору ученым умам для разработки высокоэффективных нетрадиционных преобразователей энергии (солнце, физический вакуум и т.д.).

А теперь поговорим о применении ТЭП в нетрадиционной энергетике, а точнее в солнечной энергетике.

Современная солнечная энергостанция должна быть расположена на территории с максимальным по времени и мощности приходом солнечной энергии. Она преобразует солнечную энергию в электрическую, при помощи которой из воды получают водород и уже его по системе трубопроводов передают потребителям. Передача энергии в виде водорода, а не в виде электроэнергии становится выгоднее при расстояниях, превышающих 500-600 км.

Солнечная энергостанция состоит из большого числа энергетических модулей, каждый из которого состоит из модуля преобразования, электролизера и вспомогательного оборудования. Так как каждый энергетический модуль имеет законченный цикл производства водорода и небольшую цену, то строительство такой станции может начинаться с небольших инвестиций, постепенно наращивая свою производительность.

Каждый модуль преобразования в основном состоит из солнечного коллектора (ТВВК) с параболоцилиндрическими концентраторами, термоэмиссионного преобразователя (ТЭП) и циркуляционного вентилятора. Коэффициент преобразования такого модуля может достигать 70-75%. Тепловой коэффициент современных электролизеров достигает 95%, т.е общий КП энергетического модуля может достигать 70%.

Если сравнить показатели солнечной энергостанции на основе ТЭП и ТВВК с показателями солнечной энергостанции на основе кремниевых батарей, то выявится следующее: удельные капитальные затраты у первой станции на порядок меньше, чем у второй; площадь земли, занимаемая первой станцией в 5-6 раз меньше, чем второй.

Поскольку солнечные энергостанции имеют нестабильный цикл работы, то, естественно, встает вопрос о каком-либо способе аккумулирования водорода, чтобы обеспечить работу потребителя в ночное и пасмурное на территории энергостанции время. Сейчас ученые и инженеры активно разрабатывают различного рода водородные аккумуляторы. Я же хочу обратить ваше внимание на следующее: при передаче энергии в форме водорода будут использоваться трубопроводы большого сечения и большой протяженности. Сеть этих трубопроводов можно использовать для накопления водорода. Так трубопровод внутренним диаметром 1000 мм и протяженностью 1500 км при давлении 75 атм содержит около 8 000 тонн водорода, который может обеспечить в течение 24 часов работу энергообъектов, использующих ТЭП общей мощностью около 8 ГВт.

Исходя из того, что современные электролизеры допускают производство водорода при достаточно высоких давлениях (до 100 атм), то потребность в газовых компрессорах в начале газопровода отпадает. В качестве магистральных подкачивающих компрессорных станций можно рекомендовать металлогидридные термосорбционные компрессоры (МТСК). Их работа основана на способности металлогилдридов при низких температурах поглощать водород, а при умеренно высоких – выдавать водород при значительных давлениях. Например, при давлении 3 атм и комнатной температуре мишметалл довольно быстро поглощает водород, а при нагревании его до температуры 250-260 о С водород может выдаваться уже при давлении около 100 атм. МТСК являются статическими аппаратами, в них нет движущихся частей, они выполняются абсолютно герметичными, что обеспечивает их высокую безопасность, надежность и экономичность.

Для некоторых штатов США среднегодовой приход солнечной энергии на каждый квадратный метр составляет 1500 кВтчасов, т.е. солнечная энергостанция с активной площадью 10 квадратных километров и КП=70% может выработать за год 10,5*10 9 кВтчасов электроэнергии или около 2,1 млн.тонн водорода. Для США идеальным местом расположения гелиоэнергостанции может служить так называемая “долина смерти” (360 дней в году – солнечные).

Для средней полосы России среднегодовой приход солнечной лучистой энергии на каждый квадратный метр по некоторым данным составляет 500 кВтчас, т.е. та же станция может выработать за год 3,5*10 9 кВтчасов электроэнергии или около 0,7 млн.тонн водорода. Для сравнения выработка электроэнергии в 2000 году АО “Кировэнерго” составила 3,56*10 9 кВтчасов, АО “Омскэнерго” – 6,198*10 9 , АО “Ивэнерго” – 1,352*10 9 .

Далее, выработанный на солнечных энергостанциях водород может подаваться по системе трубопроводов потребителям, которые могут его использовать для получения электроэнергии в ТЭПах, либо напрямую - в химических процессах

И в заключении о возможном финансировании данного проекта. Первый, государственный, - за счет продажи части квот на выбросы СО 2 в атмосферу (в последнее время из-за снижения объемов производства Россия согласно Киотскому протоколу не использует эти квоты полностью).

Второй – частный. На первом этапе выполнения проекта (производство небольших энергосистем индивидуального использования) грамотный инвестор даже без составления подробного экономического обоснования может увидеть высокую прибыльность этого производства.

Хотелось бы иметь скромную надежду на то, что Россия (в том числе и частный бизнесс) в очередной раз не наступит на одни и те же грабли - найдет способ профинансировать этот проект в необходимом объеме и не вынудит в очередной раз разработчиков продать эту технологию в и без того уже развитые страны, после чего будет вынуждена покупать в этих странах оборудование по этой технологии “втридорога”.


Преобразование электрической энергии в тепловую пли электронагрев имеет четыре основные разновидности, по которым классифицируются промышленные электропечи; 1) электронагрев через сопротивление; 2) дуговой электронагрев; 3) смешанный электронагрев; 4) индукционный нагрев.
Электронагрев металлургических печей имеет существенные преимущества по сравнению с нагревом в результате сжигания углеродистого топлива: возможность получения весьма высоких температур до 3000° и более при концентрации зон высоких температур в определенных участках рабочего пространства печей; легкость и плавность регулирования величины и распределения температуры в рабочем пространстве; чистота рабочего пространства и возможность избежать загрязнения его золой, серой, газами и различными примесями: низкие потерн металлов со шлаками, пылью, газами и вследствие угара; высокий термический к. п. д., достигающий 70-85%; малое количество газов и пыли; возможность комплексной механизации и автоматизации; культура и чистота рабочих мест; возможность применять любую газовую среду и вакуум.
К недостаткам электронагрева относятся: высокое потребление электроэнергии, значительно превосходящее потребление в других отраслях народного хозяйства, и конструктивное ограничение производительности и мощности для некоторых типов электропечей. в дальнейшем в связи с увеличением мощности и числа электростанций, снижением стоимости электроэнергии и увеличением мощности и производительности электропечей перечисленные недостатки утратят свое значение.
Общая активная, или ваттная мощность трехфазной электропечной установки Р определяется по формуле

Электронагрев через сопротивление


Этот тип электронагрева имеет несколько разновидностей. По способу выделения тепла различают косвенный и прямой нагрев; наибольшее значение и распространение в печной технике имеет косвенный нагрев, характеризующийся тем, что тепло выделяется в специальных нагревательных элементах (сопротивлениях) и передается от них к обрабатываемому материалу теплоотдачей. По температуре рабочего пространства печей различают нагрев; низкотемпературный в интервале 100-700°, среднетемпературный 700-1200° и высокотемпературный 1200-2000°.
При низкотемпературном нагреве весьма большое значение имеет теплообмен между нагревателем и материалом конвекцией, которая всемерно интенсифицируется принудительной циркуляцией с большими скоростями газа или воздуха внутри печен. При среднетемпературном и высокотемпературном нагреве, особенно при отсутствии принудительной циркуляции газов, основное количество тепла передается от нагревателей к обрабатываемым материалам излучением. Для электрических печей сопротивления высокотемпературный нагрев имеет лишь ограниченное значение.
Электронагрев сопротивлением нашел наибольшее применение для сушки и обжига материалов, нагрева и термической обработки металлов и сплавов, плавки легкоплавких металлов - олова, свинца, цинка, алюминия, магния и их сплавов, а также для лабораторных и бытовых нужд. Поскольку, однако, при косвенном нагреве размер нагревательных элементов увеличивается, а размещение их в рабочем пространстве печи оказывается затруднительным, верхний предел мощности электрических печей сопротивления ограничивают величиной 600-2000 квт.
Для нормального протекания процесса преобразования электрической энергии в тепловую и длительной устойчивой работы нагревательные элементы должны обладать следующими качествами: большим удельным электрическим сопротивлением, допускающим достаточное поперечное сечение элементов и ограниченную их длину; малым электрическим температурным коэффициентом, ограничивающим разницу в электрическом сопротивлении нагретого и холодного нагревателя, постоянством электрических свойств во времени; жаростойкостью и неокисляемостью; жаропрочностью, т. е. достаточной механической прочностью при высоких температурах; постоянством линейных размеров; хорошей обрабатываемостью материала (свариваемость, пластичность и др.). Этим требованиям наиболее удовлетворяют сплавы никеля, хрома, железа (нихром, фехраль и жаропрочная сталь), применяемые в электропечах сопротивления в виде проволоки или ленты, и углеродистые материалы, применяемые в виде угольных, графитовых или карборундовых стержней.
Определение размеров нагревательных элементов можно научно обосновать совместным решением двух основных уравнений, описывающих существо работы нагревателей - уравнения мощности и уравнения теплообмена. Поскольку нагревательный элемент является составной частью электрической цели, то для получения необходимой мощности он должен обладать определенными размерами и сопротивлением. С другой стороны, вся тепловая энергия, полученная в нагревательном элементе в результате преобразования электроэнергии, должна быть передана теплоотдачей к перерабатываемым материалам и футеровке печи, для чего необходимо иметь определенную поверхность, температуру и коэффициент теплоотдачи. Если теплоотдача нагревательного элемента не соответствует происходящему в нем тепловыделению - элемент будет перегреваться, а его температура может превысить допустимые для материала пределы, что приведет к разрушению нагревателя.
На основании решения уравнения мощности для нагревательных элементов любой формы и материала выведена общая формула

При расчете размеров нагревателя величина w должна точно соответствовать его удельной теплоотдаче, которую находят решением соответствующего уравнения теплообмена нагревателя, кладки и материала А.Д. Свенчанский проанализировал условия теплоотдачи для различных реальных нагревателей и составил графики и таблицы, с помощью которых можно находить величину w.

Дуговой электронагрев


Этот вид электронагрева применяется в высокотемпературных электрических печах большой мощности преимущественно для плавки различных материалов. Если дуга горит между электродом и перерабатываемым в печи материалом, то такие печи называются печами прямого действия с зависимой дугой: открытой - видимой (рис. 20, а) или закрытой - невидимой дугой, погруженной в слой шихты или расплава (рис. 20, б). Если дуга горит между электродами и непосредственно не соприкасается с перерабатываемыми в печи материалами и продуктами, то такие печи называются печами косвенного действия с независимой дугой (рис. 20, в). Наибольшим термическим к. п. д. обладают дуговые печи прямого действия, особенно с закрытой дугой, поскольку в них имеются наилучшие условия для теплообмена между дугой и материалом, позволяющие быстро и с ограниченными потерями тепла нагревать материал до весьма высокой температуры.

Дуговые печи прямого действия получили наибольшее применение для выплавки стали и ферросплавов, плавки и рафинирования меди и никеля и переработки различного рудного сырья. При плавке металлов или сплавов с высокой (металлической) электропровадностью можно работать только с открытой дугой, горящей на поверхности материала, так как погружение электродов в слой материала поведет к короткому замыканию. Работа с закрытой дугой возможна, когда перерабатываемые материалы и продукты имеют ограниченную (не металлическую) электропроводность. Дуговые печи непрямого действия применяются в тех случаях, когда соприкосновение перерабатываемого материала с дугой ухудшает качество продуктов или увеличивает потери, например при плавке некоторых цветных металлов и сплавов (латунь, бронза и др.). Следует особо подчеркнуть, что дуговой электронагрев в отличие от нагрева сопротивлением не имеет каких-либо ограничений по общей мощности печей.
Дуговой электронагрев слагается из процесса преобразования электроэнергии в тепловую, протекающего в горящей дуге, и процесса теплообмена между дугой, материалом и футеровкой. Описание закономерностей первого процесса является предметом так называемой теории дуги и особенно дуги переменного тока большой мощности. Значительный вклад в разработку теории дуги внесли В.В. Петров, В.Ф. Миткевич, С.И. Тельный, И.Т. Жердев, К.К. Хренов, Г.А. Сисоян и др. Вопросами теплообмена между дугой, материалом и футеровкой занимались Д.А. Диомидовский, Н.В. Окороков и др.
Электрическая дуга может быть получена при постоянном и переменном токе, но все промышленные печи работают обычно на переменном токе. Для устойчивого горения дуги и ограничения толчков тока при коротких замыканиях последовательно с ней в электрическую цепь включается индуктивное сопротивление, поглощающее небольшую долю активной мощности. При переменном токе в течение каждого полупериода напряжение сети и сила тока достигают максимума и проходят через нуль. На рис. 21, а показаны теоретические кривые мгновенного значения силы тока и напряжения дуги Iд и Uд и напряжения питающего источника Uист. Когда напряжение источника после перехода через нуль начинает расти, дуга зажигается только при достижении величины напряжения зажигания U1. С этого момента в цепи появляется ток, возрастающий по периодической кривой, отличной От синусоиды. Дуга затухает при напряжении затухания т. е. раньше перехода через нуль напряжения источника, и в этот момент прекращается ток. После перехода через нуль все описанные явления повторяются. Таким образом, ток в дуге идет прерывисто и дуга то зажигается, то погасает. Длительность перерывов в горении дуги зависит от многих факторов и, в частности, от материала электродов, степени разогрева печного пространства и др. Понятно, что прерывистая дуга снижает эффективность дугового нагрева и поэтому должны создаваться условия, обеспечивающие непрерывное горение дуги переменного тока. Основным средством для непрерывного горения дуги переменного тока является последовательное включение в цепь дуги индуктивного сопротивления, что видно из рис. 21, б и в.
Исследование дифференциального уравнения дуги переменного тока, имеющей в цепи активное и индуктивное сопротивления, определило соотношение величин индуктивного X и активного R сопротивлений, обеспечивающее непрерывное горение дуги при заданных напряжениях источника Uист и дуги Uд (рис. 22).

Эффективность дугового нагрева в весьма большой степени зависит от электрического режима горящей дуги и, в первую очередь, от величин напряжения и силы тока.
В настоящее время еще не создана научно обоснованная методика определения наивыгоднейшего напряжения для питания дуговых печей. Поэтому напряжение выбирают по данным заводской практики в пределах от 100 до 600 в, причем более высокое напряжение обычно принимается для дуговых печей большой мощности и для печей с закрытой дугой. Связь максимального рабочего напряжения Uлин и номинальной мощности печи Рном принято выражать эмпирической формулой

где k и n - эмпирические коэффициенты, имеющие различные значения в зависимости от типа печи и характера процесса. Например для дуговых сталеплавильных печей к = 15; n = 0,33. Работа на повышенном напряжении более рациональна, так как снижает потери электроэнергии и увеличивает длину и тепловое излучение дуги. Верхний предел напряжения (600 в) обусловлен в основном условиями электрической изоляции печи и безопасности обслуживающего персонала.
После определения величины напряжения выбор других показателей электрического режима электропечной установки с дуговым нагревом - оптимальной силы тока, cos φ и к. п. д. - производится по ее рабочим характеристикам. Рабочие характеристики дуговых печей нaxодят построением круговых диаграмм: для действующих заводских печей снимают с натуры, для вновь проектируемых печей - по расчетным данным.
Для теории дугового нагрева и расчета дуговых печей весьма большое значение имеет процесс теплообмена между горящей дугой и перерабатываемыми в печи материалами. Однако теория теплообмена в рабочем пространстве дуговых печей находится еще в начальной стадии своего развития и требует дальнейшей углубленной разработки.

Смешанный электронагрев


Этот тип нагрева, являющийся результатом совместного тепловыделения в электрической дуге и в сопротивлении слоя шихты или расплавов, имеет основное значение для рудно-термических печей, выплавляющих ферросплавы, чугун и перерабатывающих рудное сырье и полупродукты цветной металлургии и химической промышленности.
в наиболее сложном случае электрический ток, проходящий через дугу и слои шихты, шлака и металла, преобразуется в них в тепловую энергию Qдуги, Qшихты, Qшлака, Q металла, печи Робщ представляет сумму перечисленных тепловыделений. Принципиальная схема расчета всех этих тепловыделений и связь их с геометрией горна рудно-термических печей была в свое время освещена автором но для точного расчета тепловыделений не достает еще очень многих данных по термической характеристике дуги, электросопротивлениям шихты и расплавов, форме и размерам токопроводящих участков и т. п. Соответственно предложенный автором методом расчета руднотермических электропечей носит пока ориентировочный характер и имеет ограниченное применение.
Для цветной металлургии наибольшее значение имеют рудно-термические печи, работающие с электродами, погруженными в толстый слой шлака, в которых происходит смешанный электронагрев, складывающийся из двух основных составляющих: Qдуги и Qшлака.
М.С. Максименко предложил разделять все электротермические процессы на две основные группы; 1) процессы, в которых доля энергии, поглощаемая в дуге р, больше доли энергии, поглощаемой в шихте и расплавах 2) процессы, у которых р

Индукционный электронагрев


Индукционный электронагрев осуществляется по принципу трансформатора, у которого вторичная обмотка замкнута на. себя, в результате чего индуктируемый электрический ток преобразуется в тепловую энергию. Роль вторичной обмотки играет обычно сам нагреваемый материал. Электрическая энергия, подводимая в первичную обмотку (индуктор), совершает сложный переход в энергию быстропеременного магнитного поля, которая, в свою очередь, вновь переходит во вторичной цепи в электрическую энергию, преобразуемую здесь за счет сопротивления цепи в тепловую энергию. Если нагреваемый материал ферромагнитен, те часть энергии переменного магнитного поля преобразуется в тепловую энергию непосредственно, без перехода в электрическую энергию.
Наибольшее распространение в технике имеют два типа индукционных печей: 1) печи с железным сердечником; 2) печи без сердечника - высокочастотные.

Печи с железным сердечником имеют принципиальную схему (рис. 23, а), похожую на схему обычного трансформатора, у которого первичная обмотка насажена на железный сердечник, а вторичная представлена замкнутым кольцом расплавленного металла, т. е. совмещена с нагрузкой. В результате энергичной циркуляции металл, нагреваемый в кольцевом канале, поднимается вверх в рабочее пространство печи и, соприкасаясь с находящейся там шихтой, нагревает и расплавляет ее.
Печи без сердечника по своей схеме представляют воздушный трансформатор (рис. 23, б), первичной обмоткой которого является медная катушка - индуктор, а вторичная-сама металлическая шихта, загруженная в тигель.
Действующее значение индуктируемой электродвижущей силы Е. в, зависит от амплитудной величины полезного магнитного потока Фм, вб, частоты переменного тока f, пер/сек, числа витков обмотки w, и выражается формулой

В печах с железным сердечником величина достаточно большая благодаря концентрации полезного магнитного потока в сердечнике, а в печах без сердечника величина мала из-за большого магнитного рассеивания. Вследствие этого в индукционных печах с железным сердечником необходимая величина электродвижущей силы Е легко достигается на переменном токе с нормальной и пониженной частотой (f Основные преимущества индукционного нагрева следующие: выделение тепла прямо в массе нагреваемого материала, что уменьшает роль теплообменных процессов, обеспечивает более равномерный прогрев материала и значительно повышает термический к. п. д. индукционных печей; исключительная чистота рабочего пространства печей (обусловленная отсутствием загрязняющих его продуктов горения топлива, материалов нагревательных элементов и электродов), позволяющая получать особо чистые металлы и сплавы; возможность полной изоляции рабочего пространства печей от окружающего воздуха и ведения плавки в вакууме или в газовой защитной атмосфере; возможность получения весьма высокой температуры, лимитируемой только свойствами нагреваемого материала и огнеупорной кладки; энергичное перемешивание расплавов электромагнитными и тепловыми потоками, позволяющее получать сплавы равномерного химического состава; высокая удельная производительность индукционных печей; большая скорость нагрева и плавления; малые потери металлов от угара; высокая техническая культура печных агрегатов, отсутствие пыли и газов.
К недостаткам индукционного нагрева относятся: пониженный коэффициент мощности, поскольку для печей с железным сердечником соs φ = 0,3/0,8 и для бессердечниковых печей соs φ = 0,03/0,1; ограниченные размеры, мощность и емкость индукционных печей по сравнению с другими агрегатами; сложность электрического оборудования бессердечниковых печей, требующих специальных источников переменного тока высокой частоты и конденсаторных батарей значительной емкости; ограниченная стойкость футеровки каналов печей с железным сердечником и тиглей бессердечниковых печей: низкая температура нагрева шлаков.
Преимущества индукционного нагрева обусловили его широкое распространение. Индукционные печи с железным сердечником являются в настоящее время основным агрегатом для плавки и литья цветных металлов и производства цветных сплавов. Индукционные печи без сердечника применяются для плавки цветных и благородных металлов и для получения качественных стальных отливок. В металлургии меди, никеля и цинка также применяются индукционные печи, работающие на конечных переделах. Индукционный нагрев широко применяется на машиностроительных заводах при термической обработке различных металлических заготовок и изделий.
Теория индукционных печей с железным сердечником базируется на теории однофазного двухобмоточного трансформатора с железным сердечником. Отличие обычного трансформатора от индукционной печи с железным сердечником заключается в том, что у трансформатора вторичная обмотка и сеть потребления (нагрузка) находятся на значительном расстоянии одна от другой, а в индукционной печи вторичная обмотка совмещена с нагрузкой и представлена кольцом расплавленного металла.
Преобразуемая мощность Рпр может быть выражена через вторичный ток I2 и фактическое активное сопротивление металла в канале r2 формулой

Мощность, теряемая в индукторе (электрические потери) Рэл, выражается через первичный ток I1 и фактическое активное сопротивление обмотки индуктора

Полная активная (ваттная) мощность индукционной печи с железным сердечником Р будет

В теории индукционных печей без железного сердечника эти печи рассматриваются как воздушные трансформаторы, у которых в результате отсутствия замкнутого железного магнитопровода магнитные потоки проходят по перерабатываемой шихте и по воздуху.
Частота питающего индуктор переменного тока f зависит от емкости (мощности) индукционной печи и удельного сопротивления перерабатываемой шихты р2. Исследования показывают, что чем больше емкость печи и ее размеры, в частности диаметр шихты d, см, и чем меньше удельное сопротивление расплавленного металла р2. ом/см3, тем меньше может быть минимальная частота fмин, гц; указанная зависимость выражается формулой

Каждой емкости печи и сопротивлению соответствует определенная оптимальная частота питающего тока, при которой к. п. д. печи достигает возможного максимального значения. Для бессердечниковых печей большой емкости (мощности) оказалось возможным применять пониженную частоту переменного тока, вплоть до нормальной 50 гц.
Активная мощность бессердечниковой печи Ра состоит из мощности, преобразуемой в шихте, и мощности, теряемой в индукторе, и выражается формулой

На основании закономерностей процессов горения топлива и преобразования электрической энергии в тепловую могут решаться следующие наиболее важные задачи по теории, эксплуатации и проектированию металлургических печей:
а) выбор системы нагрева печей (углеродистое топливо или электроэнергия);
б) выбор типа и сорта топлива и системы его сжигания;
в) выбор параметров электроэнергии и системы ее преобразования в тепловую энергию;
г) расчеты процессов горения топлива;
д) выбор и расчет топочных устройств;
е) расчет и конструирование электрических печей.

Основные методы и способы преобразования электрической энергии в тепловую классифицируют следующим образом. Различают прямой и косвенный электрический нагрев.

При прямом электронагреве преобразование электрической энергии в тепловую происходит в результате прохождения электрического тока непосредственно по нагреваемому телу или среде (металл, вода, молоко, почва и т. п.). При косвенном электронагреве электрический ток проходит по специальному нагревательному устройству (нагревательному элементу), от которого тепло передается нагреваемому телу или среде посредством теплопроводности, конвекции или излучения.

Существует несколько видов преобразования электрической энергии в тепловую, которые определяют способы электрического нагрева.

Протекание электрического тока по электропроводящим твердым телам или жидким средам сопровождается выделением тепла. По закону Джоуля - Ленца количество тепла Q=I 2 Rt, где Q - количество, тепла, Дж; I - силатока, А; R - сопротивление тела или среды, Ом; t - время протекания тока, с.

Нагрев сопротивлением может быть осуществлен контактным и электродным способами.

Контактный способ применяется для нагрева металлов как по принципу прямого электрического нагрева, например в аппаратах электроконтактной сварки, так и по принципу косвенного электрического нагрева - в нагревательных элементах.

Электродный способ применяется для нагрева неметаллических проводящих материалов и сред: воды, молока, сочных кормов, почвы и др. Нагреваемый материал или среда помещается между электродами, к которым подводится переменное напряжение.

Электрический, ток, протекая по материалу между электродами, нагревает его. Обычная (недистиллированная) вода проводит электрический ток, так как в ней всегда содержится некоторое количество солей, щелочей или кислот, которые диссоциируют на ионы, являющиеся носителями электрических зарядов, то есть электрического тока. Аналогична природа электропроводности молока и других жидкостей, почвы, сочных кормов и т. п.

Прямой электродный нагрев осуществляется только на переменном токе, так как постоянный ток вызывает электролиз нагреваемого материала и его порчу.

Электронагрев сопротивлением нашел широкое применение в производстве в связи с его простотой, надежностью, универсальностью и невысокой стоимостью нагревательных устройств.

Электродуговой нагрев

В электрической дуге, возникающей между двумя электродами в газообразной среде, происходит превращение электрической энергии в тепловую.

Для зажигания дуги электроды, присоединенные к источнику питания, на мгновение соприкасают, а затем медленно разводят. Сопротивление контакта в момент разведения электродов сильно нагревается проходящим по нему током. Свободные электроны, постоянно движущиеся в металле, с повышением температуры в месте соприкосновения электродов ускоряют свое движение.

С ростом температуры скорость свободных электронов настолько возрастает, что они отрываются от металла электродов и вылетают в воздушное пространство. При движении они сталкиваются с молекулами воздуха и расщепляют их на положительно и отрицательно заряженные ионы. Происходит ионизация воздушного пространства между электродами, которое становится электропроводным.

Под действием напряжения источника положительные ионы устремляются к отрицательному полюсу (катоду), а отрицательные ионы - к положительному полюсу (аноду), тем самым образуя длительный разряд - электрическую дугу, сопровождающуюся выделением тепла. Температура дуги неодинакова в различных ее частях и составляет при металлических электродах: у катода - около 2400 °С, у анода - около 2600 °С, в центре дуги - около 6000 - 7000 °С.

Различают прямой и косвенный электродуговой нагрев. Основное практическое применение находит прямой электродуговой нагрев в дуговых электросварочных установках. В установках косвенного нагрева дуга используется как мощный источник инфракрасных лучей.

Если в переменное магнитное поле поместить кусок металла, то в нем будет индуктироваться переменная э. д. с, под действием которой в металле возникнут вихревые токи. Прохождение этих токов в металле вызовет его нагрев. Такой способ нагрева металла называется индукционным. Устройство некоторых индукционных нагревателей основано на использовании явления поверхностного эффекта и эффекта близости.

Для индукционного нагрева используются токи промышленной (50 Гц) и высокой частоты (8-10 кГц, 70-500 кГц). Наибольшее распространение получил индукционный нагрев металлических тел (деталей, заготовок) в машиностроении и при ремонте техники, а также для закалки металлических деталей. Индукционный способ может использоваться также для нагрева воды, почвы, бетона и пастеризации молока.

Диэлектрический нагрев

Физическая сущность диэлектрического нагрева заключается в следующем. В твердых телах и жидких средах с плохой электрической проводимостью (диэлектриках), помещенных в быстропеременное электрическое поле, электрическая энергия превращается в тепловую.

В любом диэлектрике имеются электрические заряды, связанные межмолекулярными силами. Эти заряды называются связанными в отличие от свободных зарядов в проводниковых материалах. Под действием электрического поля связанные заряды ориентируются или смещаются в направлении поля. Смещение связанных зарядов под действием внешнего электрического поля называется поляризацией.

В переменном электрическом поле происходит непрерывное перемещение зарядов, а следовательно, и связанных с ними межмолекулярными силами молекул. Энергия, затрачиваемая источником на поляризацию молекул непроводниковых материалов, выделяется в виде тепла. В некоторых непроводниковых материалах есть небольшое количество свободных зарядов, которые создают под действием электрического поля незначительный по величине ток проводимости, способствующий выделению дополнительного тепла в материале.

При диэлектрическом нагреве материал, подлежащий нагреванию, помещается между металлическими электродами - обкладками конденсатора, к которым подводится напряжение высокой частоты (0,5 - 20 МГц и выше) от специального высокочастотного генератора. Установка для диэлектрического нагрева состоит из лампового генератора высокой частоты, силового трансформатора и сушильного устройства с электродами.

Высокочастотный диэлектрический нагрев - перспективный способ нагрева и применяется главным образом для сушки и тепловой обработкидревесины, бумаги, продуктов и кормов (сушки зерна, овощей и фруктов), пастеризации и стерилизации молока и т. п.

Электронно-лучевой (электронный) нагрев

При встрече потока электронов (электронного луча), ускоренных в электрическом поле, с нагреваемым телом электрическая энергия превращается в тепловую. Особенностью электронного нагрева является высокая плотность концентрации энергии, составляющая 5х10 8 кВт/см2, что в несколько тысяч раз выше, чем при электродуговом нагреве. Электронный нагрев применяется в промышленности для сварки очень мелких деталей и выплавки сверхчистых металлов.

Кроме рассмотренных способов электронагрева, в производстве и быту находит применение инфракрасный нагрев (облучение).

Добавить сайт в закладки

Как происходит преобразование тепловой энергии в электрическую

Непосредственное преобразование тепловой энергии в электриче­скую можно осуществить, используя явления в контакте двух метал­лов или полупроводников, где действуют сторонние силы, которыми обусловлена диффузия заряженных частиц.

Величина контактной разности потенциалов зависит не только от свойств контактирующих материалов, но и от температуры контакта, так как с температурой связаны энергия свободных электронов и их концентрация.

Рассматривая замкнутую цепь из двух разных металлов (рис. 1а), можно убедиться в том, что при одинаковой темпера­туре контактов 1 и 2 электрический ток в цепи не получится, так как контактные разности потенциалов, определяемые формулой

U k = (A 1 – A 2) : e 0

в обоих контактах одинаковы, но направлены в противоположные сто­роны по цепи:

U k 1 - U k 2 = (A 1 – A 2) + (A 2 - A 1) : e 0 = 0

Если один из контактов, например 1, нагреть (t 1 > t 2), то равнове­сие нарушится - в контакте 1 появится дополнительный скачок потенциала, связанный с нагревом. В этом случае U k1 > U K2 . В цепи образуется термоэлектродвижущая сила (термо-э. д. с.), абсолютное значение которой пропорционально разности температур контактов:

E т = U Kl - U K2 = E 0 (t 1 - t 2),

где Е 0 - величина, зависящая от свойств металлов, образующих контакт.

Рисунок 1 . а) замкнутая цепь из двух разных металлов, б) цепь с измерителем термо-э. д. с.

Таким образом, термо-э. д. с. возникает в цепи, состоящей из раз­ных металлов, при разной температуре мест соединения.

Термо-э. д. с. в рассматриваемой цепи поддерживается благодаря нагреванию спая 1, т. е. при постоянном расходе тепловой энергии. В свою очередь, термо-э. д. с. является причиной электрического тока.

Однако концентрация свободных электронов в металлах велика и при переходе из одного металла в другой меняется очень мало. В связи с этим контактная разность потенциалов оказывается незначитель­ной и мало зависит от температуры. По этой причине металлические термоэлементы имеют очень малые э. д. с. (в спае платины и железа - 1,9 мВ при разности температур горячего и холодного спаев 100° С), а к. п. д. их не превышает 0,5%. Такие термоэлементы применяют для измерения температур (термопары).

Для этого в цепь термопары включается измеритель термо-э. д. с. - милливольтметр (рис. 1, 6). Термопара в этом случае является источником электрической энергии, а измерительный прибор - приемником.

Кроме контакта 1 основных металлов термопары между собой образуются контакты их с соединительными проводами (Рис. 1 - 2, 3). В этих контактах тоже имеются контактные разности потенциалов, но они не изменяют термо-э. д. с., если их температура поддерживается одинаковой.

При наличии произвольного числа контактов разных металлов сумма контактных разностей потенциалов в замкнутой цепи остается равной нулю, если все контакты имеют одинаковую температуру. В этом можно убедиться, составив уравнение, аналогичное вышеприведенному. Независимо от числа контактов, термо-э. д. с. пропорциональна разности температур более нагретого контакта и всех других контактов, находящихся при одинаковой температуре.

Рисунок 2. n,p- полупроводники.

В отличие от металлов, в полупроводниках при увеличении температуры сильно увеличиваются концентрации свободных электронов и дырок. Это свойство полупроводников позволяет получить более высокие термо-э. д. с. (до 1 мВ на 1° С разности температур) и к. п. д. термоэлементов до 7%.

Полупроводниковый термоэлемент состоит из двух полупроводников (п и р на рис. 2). Один из них имеет электронную, а другой дырочную электропроводность. При нагревании полупроводников в месте соединения их металлической пластинкой сильно увеличивается концентрация свободных носителей заряда. Поэтому в полупроводниках возникает диффузия их от горячего конца к холодному. В полупроводнике с электронной электропроводностью к холодному концу перемещаются электроны, в результате чего этот конец заряжается отрицательно. В другом полупроводнике к холодному концу перемещаются дырки, образуя положительный заряд. Возникшая разность потенциалов противодействует диффузии, и при некотором значении ее устанавливается равновесие сил электрического поля и сторонних сил, под действием которых идет процесс диффузии носителей заряда. Эта разность потенциалов и является термо-э. д. с. полупроводникового термоэлемента.

Если к холодным концам полупроводников подключить токопроводящий элемент, например, резистор, то образуется замкнутая цепь и электрический ток в ней.

Количество цифровых гаджетов постоянно увеличивается. К сотовому телефону добавились мобильная радиостанция, GPS-навигатор и фотоаппарат.

Таскать с собой полный котелок запасных аккумуляторов для всей этой электронной братии тяжело, а в холодное время года еще и бессмысленно – их емкость и мощность при низких температурах сильно сокращаются.

Поэтому каждый путешественник хотел бы обзавестись устройством, преобразующим в электричество доступную в походе энергию.

Весьма практичными оказались термогенераторы – источники, для работы которых необходимо тепло. На чем основан принцип их работы и как можно сделать термогенераторы электричества своими руками – об этом пойдет речь в этой статье.

Термоэлектродвижущая сила возникает в замкнутом контуре при соблюдении двух условий:

  1. Если он состоит хотя бы из двух проводников, изготовленных из различных материалов.
  2. Если все входящие в состав контура разнородные участки имеют различную температуру (хотя бы в области соединения).

В физике данное явление называют эффектом Зеебека.

Величина термоЭДС зависит от вида материалов и разности их температур.

Определяют ее по формуле:

Е = к (Т1 – Т2),

  • Где Т1 и Т2 – температура проводников;
  • К – коэффициент Зеебека.

Наибольшей производительностью обладают контуры, состоящие из разнородных полупроводников (обладающих р- и n-проводимостью). В металлах эффект Зеебека проявляется незначительно, за исключением некоторых переходных металлов и их сплавов, например, палладия (Pd) и серебра (Ag).

Теплообменники широко применяются в быту. Довольно легко можно сделать – инструкция по сборке представлена в статье.

Пошаговая инструкция по облицовке камина своими руками представлена .

Знаете ли вы, что напряжение всего в 12 Вольт может служить источником тепла? По ссылке инструкция по изготовления обогревателя 12 Вольт своими руками.

Принцип работы

Решать задачу по производству электричества из тепловой энергии приходится, как принято говорить в науке, от обратного. Противоположным эффекту Зеебека является эффект Пельтье, который состоит в изменении температур двух объединенных в замкнутый контур разнородных полупроводников при пропускании через них постоянного тока: один из них нагревается, второй – остывает.

Если направление тока изменить, изменится и направление теплового потока: первый полупроводник будет остывать, а второй – нагреваться. В качестве полупроводников чаще всего применяют твердую смесь кремния с германием и теллурид висмута.

Эффект Пельтье

Эффект, открытый Жаном Пельтье, получил широкое применение в различных сферах человеческой жизнедеятельности, где требуются холодильные машины, но нет возможности применить компрессорный тепловой насос на фреоне. Поэтому именно его именем назвали выпускаемые для этой цели устройства – элементы Пельтье.

Но если на такой элемент или, как его еще называют, термоэлектрический охладитель оказать воздействие с противоположной стороны, то есть создать на его полупроводниках разность температур, то мы получим эффект Зеебека: элемент Пельтье превратится в источник постоянного тока.

Конструкция термогенератора

Итак, идея термогенератора довольно проста: необходимо взять элемент Пельтье и сильно нагреть одну из его поверхностей. В генераторах заводского изготовления для этого применяются газовые горелки. Но создать такой прибор в домашних условиях довольно сложно – трудно обеспечить стабильное горение пламени в течение длительного времени.

Поэтому народные умельцы отдают предпочтение более простой версии термогенератора, о которой мы сейчас и расскажем.

Изготовление своими руками

Схематично устройство самодельной термоэлектростанции можно представить так:

  1. Элемент Пельтье положим на дно глубокой посудины – миски или кружки.
  2. Далее в эту посудину вставим еще одну: если используются миски, то понадобится такая же; если ваш выбор пал на кружки, то вторая должна быть чуть меньше первой.
  3. К выведенным от элемента Пельтье проводам присоединим преобразователь напряжения.
  4. Внутреннюю посудину заполним снегом или холодной водой, после чего всю конструкцию поставим на огонь.

Через какое-то время снег растает, превратится в воду и закипит. Производительность генератора при этом понизится, но зато турист получит возможность выпить горячего чайку. После чаепития можно будет заправить генератор новой порцией снега.

Чем больше термоэлементов (их еще называют ветвями) будет у приобретенного вами элемента Пельтье, тем лучше. Можно применить прибор марки TEC1-127120-50 – их у него 127. Данный элемент рассчитан на токи до 12А.

Порядок работ

Теперь рассмотрим процесс создания самодельного термогенератора в деталях:

  1. Поверхность каждой посудины в месте контакта с элементом Пельтье следует выровнять и зачистить, что обеспечит максимальный теплообмен. Для идеального прилегания можно отполировать донышки смазанным пастой ГОИ куском войлока, закрепленным в шпинделе электродрели.
  2. Присоединяем к контактам элемента Пельтье провода от электроплиты, снабженные термостойкой изоляцией. За неимением таковых можно применить, к примеру, провод МГТФЭ-0,35, обернув его термостойкой тканью.
  3. Смазав дно одной из посудин термопроводящей пастой, например, КПТ-8, укладываем на него элемент Пельтье. Подсоединенные к нему провода следует расположить так, чтобы их концы оказались вне емкости.
  4. Сверху элемент Пельтье снова смазываем термопастой и вставляем в нашу кружку или миску вторую емкость подходящего размера (у кружки нужно будет отрезать ручку).
  5. Пространство между емкостями необходимо заполнить термоустойчивым герметиком (можно купить в автомагазине состав для ремонта выхлопных труб). Он послужит теплоизоляцией между горячей и холодной сторонами генератора и дополнительной защитой для проводов.

Походный генератор электричества

Выступающие концы проводов можно приклеить к бортику кружки матерчатой изолентой.

Изготовление преобразователя

В ходе эксперимента установленный на электроплитку термогенератор при наличии снега во внутренней емкости обеспечил ЭДС в 3В и ток в 1,5А. После превращения снега в воду и ее закипания мощность генератора упала в три раза (напряжение составило 1,2В).

Чтобы использовать такой прибор в качестве зарядного устройства для телефона или другого гаджета, которому требуется стабильное напряжение в 5 В или 6,5 В, его необходимо оснастить преобразователем напряжения.

Рассмотрим два варианта.

Вариант 1

Проще всего применить в качестве преобразователя микросхему КР1446ПН1, снабженную DIP-корпусом.

Производится она в России и ее легко можно найти в магазине радиодеталей или на радиорынке.

Воспользоваться не возбраняется и более мощными аналогами, но все они выпускаются в миниатюрных корпусах для поверхностного монтажа, так что придется помучиться с распайкой.

На вход микросхемы подается напряжение с элемента Пельтье, а сама она включается в режиме «5 Вольт» (штатный). Параллельно с элементом Пельтье на вход преобразователя напряжения следует припаять достаточно мощный шунтирующий диод. Он предотвратит движение тока в обратном направлении, если на генератор будет оказано противоположное температурное воздействие.

К примеру, будучи заполненным горячей водой он может быть по неосторожности установлен на какую-нибудь холодную поверхность.

К выходу преобразователя нужно припаять кабель от старого зарядного устройства, подходящего для нашей модели телефона или фотоаппарата, а также светодиодный индикатор на 5 В.

Недостаток этого варианта: предложенная в качестве преобразователя микросхема ограничивает мощность генератора, поскольку ток на ее выходе не превышает 100 мА. Таким образом, элемент Пельтье используется приблизительно на 20%, чего будет достаточно только для телефонов устаревших моделей.

Чтобы иметь возможность заряжать более мощные устройства, необходимо применить усложненную версию преобразователя напряжения.

Вариант 2

Более мощный преобразователь можно собрать по двухкаскадной схеме с применением пары микросхем MAX 756. Чтобы при отключении потребителя генерируемый ток не пропадал зря, оснастим преобразователь встроенными аккумуляторами. Соединенные последовательно, они включены в нагрузку первого каскада через выключатель, диод и токоограничивающий резистор. Сам каскад настроен на режим выхода «3,3 Вольт».

К выходу каскада №1 подключаем каскад №2, настроенный на режим выхода «5 Вольт». Оба каскада реализованы согласно схеме, приведенной в документации на микросхему MAX 756 (опубликована в Сети). Единственное отличие – цепь обратной связи каскада №2 (между выходом каскада и ногой №6 его микросхемы) дополняется последовательностью из 3-х кремниевых диодов, расположенных анодом к выходу.

Простейший походный термогенератор

Такое усовершенствование позволит получать на холостом ходу напряжение величиной 6,5 В (требуется для зарядки некоторых электронных устройств).

Чтобы упростить схему, можно применить микросхему MAX 757, которая снабжена отдельным выходом обратной связи.

Интерфейс этого преобразователя соответствует типу USB Type A. Но если к нему предполагается подключать USB-устройство, то последовательность диодов из цепи обратной связи 2-го каскада лучше убрать, чтобы выходное напряжение вернулось на уровень 5 В.

Эту версию преобразователя нельзя подключать к портам типа USB-Host.

Вариация на тему…

Элемент Пельтье можно просто прикрепить к колышку, втыкаемому в землю поблизости от костра.

Чтобы создать достаточный температурный градиент, обе его поверхности нужно оснастить ребристыми радиаторами.

На поверхности со стороны пламени радиатор должен иметь увеличенную площадь, а его ребра устанавливаются горизонтально.

На противоположной стороне элемента установлен меньший радиатор, а его оребрение – вертикальное.

Батареи отопления могут устанавливаться по-разному в зависимости от типа отопительной системы – однотрубной или двухтрубной. и советы по месту их установке – читайте внимательно.

Как отремонтировать циркуляционный насос своими руками? Основные типы поломок и методы их устранения представлены .

Видео на тему