02.04.2019

Солнечная батарея своими руками. Устройство солнечной батареи



Однажды услышав по телевидению о солнечных батареях, которые способны превращать энергию солнца в электрическую автор загорелся идеей их использования. Для начала он постарался узнать как можно больше информации о солнечных панелях, инверторах, элементах и их прочих составляющих. К сожалению хорошие солнечные панели стоят довольно дорого и автор не мог просто взять и купить заводскую панель для практического использования дома. Однако среди множества статей в сети интернет автор нашел несколько посвященных самостоятельной сборке солнечных панелей в домашних условиях.

Материалы и инструменты, которые использовал автор для создания своей солнечной панели:
1) стекла оконные размером 86 на 66 см
2) алюминиевые уголки
3) паяльник с расходными материалами
4) комплект солнечных элементов
5) скотч двухсторонний
6) инвертор
7) аккумуляторы

Рассмотрим более подробно этапы постройки солнечной панели.

Перед созданием своей первой солнечной панели автор довольно длительное время готовился изучая статьи посвященных сборке панелей, информацию о различных типов элементов, способов герметизации и материалов необходимых для создания панелей новичку. Одно из важнейших знаний, которое почерпнул автор в данных статьях это опыт чужих ошибок. Так например он довольно детально изучил основные ошибки при герметизации панели, а так же понял как лучше работать с пластинами солнечных элементов, чтобы не повредить их.

После теоретической подготовки автор приступил к практической. Так как бюджет на изготовление солнечной панели был не велик, то собирать ее автор решил по большей части из подручных материалов. Найдя довольно неплохой магазин пластиковых окон, автор заказал там два стекла размером 86 на 66 см. Так же в одном из магазинов были приобретены алюминиевые уголки, которые будут составлять каркас солнечной панели. Солнечные элементы автор решил заказать в интернет магазине, так как там они были гораздо дешевле.

Когда все основные материалы были собраны, а элементы получены на почте, автор приступил к сборке своей первой солнечной панели.
Для начала было решено соединить все элементы при помощи металлической ленты и паяльника. Так как автор ознакомился с основными ошибками при пайке солнечных элементов, то данный процесс прошел без поломок. В работе автор использовал небольшое количество канифоли, а нажим при пайке был легким, к тому же перед началом работ все элементы были разложены на ровную поверхность стекла, таким образом весь процесс пайки элементов не составил большого труда. На пайку 36 пластин солнечных элементов у автора ушло около полутора часов, плюс было потрачено некоторое время на лужение проводов. Главными принципами автор назвал необходимость в паяльнике на 40 вт, так как пластины отдают тепло при приближении паяльника, а канифоли для спайки надо совсем немного иначе олово может не прилипнуть к пластине, именно по этой причине автору пришлось залудить все провода полностью.


Для закрепления пластин на стекле в ровном положении рядов автор использовал двухсторонний скотч. Этим же скотчем автор полностью закрепил окантовку стекла, на которое затем была наклеена полимерная пленка.

Ниже расположена фотография со всеми видами скотча, которые применял автор при создании данной солнечной панели:



Так же скотч понадобился автору при герметизации солнечной панели. герметизировать элементы очень важно, так как если влага попадет на контакты они окислятся и придется их перепаивать. Поэтому на собранную панель была наклеена полиэтиленовая пленка, которую автор закрепил все тем же двухсторонним скотчем. Главное в данном процессе не забывать о запасах для краев и аккуратность при создании прорезов под провода. После того как пленка была успешно наклеена автор использовал силиконовый герметик.


Далее стекло необходимо было поместить в рамку, чтобы уберечь его от сколов да и просто увеличить надежность конструкции солнечной батареи. Рамку для стекла автор предпочел делать из пластика, так как у него имелось некоторое количество пластика оставшегося от домашнего ремонта, хотя так же можно использовать и металлические уголки или деревянные бруски. В общем все зависит от того каким средствами и материалами вы располагаете.

Рамка была склеена при помощи стандартного утюга на ровной поверхности при 45 градусах.

Затем стекло было установлено внутрь такой самодельной рамы и края еще раз проклеены силиконовым герметиком. Лишняя пленка в процессе была обрезана для лучшего эстетического вида изделия.


В итоге получилась вот такая солнечная панель сделанная из подручных материалов:


Таким же образом была собрана еще одна солнечная панель, так как элементов было закуплено с запасом.
Далее автор решил приступил к испытаниям собранной панелей.

У первой панели было напряжение в 21 В и сила тока при замыкании 3.4 А. Заряд батареи 40 А.ч. 2.1 А. При испытаниях было довольно облачно и проверить максимальную мощность панелей не удалось.

В итоге при тех же погодных условиях собранная система из двух солнечных панелей выдавал мощность тока замыкания в 7 ампер, а напряжение около 20 В. Этого вполне достаточно, к тому же при более солнечной погоде показатели будут значительно лучше.

Все началось с прогулки по сайту eBay -увидел солнечные панели и заболел.

Споры с друзьями об окупаемости были смешны…. Покупая автомобиль никто, не думает об окупаемости. Авто как любовница, готовь сумму на удовольствие заранее. А тут совсем наоборот, затратил деньги так они еще и пытаются окупиться… Кроме того, подключил к солнечным панелям инкубатор так они еще как оправдывают свое предназначение, предохраняя ваше будущее хозяйство от гибели. В общем, имея инкубатор, ты зависишь от многих факторов, тут либо пан, либо профан. Когда будет время, напишу о самодельном инкубаторе. Ну ладно чего рассуждать, каждый в праве выбирать…..!

После долгих ожиданий, заветная коробочка с тонкими хрупкими пластинками, наконец, греет руки и сердце.

Первым делом конечно Интернет … ну, не боги горшки обжигают. Опыт чужой всегда полезен. И тут наступило разочарование….. Как оказалось, своими руками панели сделали человек пять, остальные просто перекопировали на свои сайты, причем некоторые, дабы быть оригинальней скопированы с разных разработок. Ну да бог с ними пусть это остается на совести хозяев страничек.

Решил почитать форумы, долгие рассуждения теоретиков «как доить корову» привели в полное уныние. Рассуждения о том, как ломаются пластины от нагрева, трудности герметизации и т д. Почитал и плюнул на все это дело. Мы пойдем своим путем, методом проб и ошибок, опираясь на опыт «коллег», чего изобретать велосипед?

Ставим задачу:

1) Панель должна быть изготовлена из подручных материалов, дабы не тянуть кошелек, ибо неизвестен результат.

2) Процесс изготовления должен быть нетрудоемким.

Начинаем изготовление солнечной панели:

Первым делом были приобретены 2 стекла 86х66 см. для будущих двух панелей.

Стекло простое, приобретал у производителей пластиковых окон. А может и не простое…

Долгий поиск алюминиевых уголков, по опыту уже проверенному «коллегами» закончился ничем.

Потому процесс изготовления начинался вяло, с чувством долгостроя.

Процесс пайки панелей описывать не стану, так как в сети много информации про это и даже видео есть. Просто оставлю свои заметки и замечания.

Не так страшен черт, как его малюют.

Не смотря на трудности, которые описывают на форумах, пластины элементов паяются легко, как лицевая сторона, так и тыльная. Так же, вполне пригоден наш советский припой ПОС- 40, во всяком случае, никаких трудностей я не испытал. Ну и конечно, наша родная канифоль, куда без нее… За время пайки не сломал ни одного элемента, думаю надо быть полным идиотом, чтобы сломать их на ровном стекле.

Проводники, которые идут в комплекте к панелям, очень удобны, во-первых, они плоские, во-вторых, они луженные, что значительно сокращает время пайки. Хотя вполне можно использовать обычный провод, провел эксперимент на запасных пластинах, трудностей в пайке не испытал. (на фото остатки плоского провода)

На пайку 36 пластин у меня ушло около 2 часов. Хотя на форуме читал, что люди паяют по 2 дня.

Паяльник желательно использовать на 40 Вт. Так как пластины легко отводят тепло, а это затрудняет пайку. Первые попытки паять 25 Ватным паяльником были нудными и печальными.

Так же при пайке желательно оптимально подбирать количество флюса (канифоли). Ибо большой избыток ее не дает прилипнуть олову к пластине. А потому приходилось практически залуживать пластинку, в общем, ничего страшного, все поправимо. (приглядитесь на фото видно.)

Расход олова довольно большой.

Ну вот, на фото пропаянные элементы, во втором ряду косяк, не пропаян один вывод, но ничего главное заметил и исправил.

Окантовка стекла сделана двухсторонним скотчем далее на этот скотч будет приклеена полиэтиленовая пленка.

Скотчи, которые использовал.

После припайки, начало герметизации (скотч вам в помощь).

Ну вот, проклеенные пластины скотчем и исправленным косяком.

Далее с окантовки панели снимаем защитный слой двухстороннего скотча и приклеиваем на нее полиэтиленовую пленку с запасом на края. (сфоткать забыл) Ах да, в скотче проделываем прорези для отходящих проводов. Ну не глупые, поймете, что и когда… По краю стекла, а так же выводы проводов, углы, промазываем силиконовым герметикам.

И загибаем пленку на внешнюю сторону.

Предварительно было изготовлена рамка из пластика. Когда в доме устанавливал пластиковые окна, на окно шурупами крепят пластиковый профиль для подоконника. Посчитал, что эта часть слишком тонкая. А потому удалил и сделал подоконник по своему. Потому, от 12 окон остались пластиковые профили. Так сказать материал в избытке.

Рамку клеил обычным, старым, советским утюгом. Жаль, процесс не снимал, но думаю, ничего тут сверх непонятного нет. Отрезал под 45 градусов 2 стороны, нагрел на подошве утюга и приклеил предварительно установив на ровный угол. На фото рамка под вторую панель.

Устанавливаем стекло с элементами и защитной пленкой в рамку

Лишнюю пленку обрезаем, а края проклеиваем силиконовым герметикам.

Получаем вот такую панель.


Да, забыл написать, что кроме пленки к рамке приклеил направляющие, которые не дают упасть элементам, если скотч отклеиться. Пространство между элементами и направляющими залито монтажной пеной. Что позволило прижать плотнее элементы к стеклу.

Ну, начнем испытания.

Так как панель одну я изготовил заранее, результат одной мне известен Напряжение 21Вольт. Ток короткого замыкания 3,4 Ампера. Сила тока заряда аккумуляторной батареи 40А. ч 2,1 Ампера.

К сожалению не фоткал. Надо сказать, что сила тока круто зависит от освещенности.

Теперь соединенные параллельно 2 батареи.

Погода на момент изготовления была облачная, было около 4 часов дня.

Вначале меня это расстроило, а потом даже обрадовало. Ведь это самые усредненные условия для батареи, а значит результат правдоподобнее, чем при ярком солнце. Солнышко просвечивало через облака не так ярко. Надо сказать, что и светило солнышко немного сбоку.

При таком освещении ток короткого замыкания составил 7.12 Ампер. Что считаю превосходным результатом.

Напряжение без нагрузки 20,6 Вольт. Ну, это стабильно около 21 вольта.

Ток заряда АКБ 2,78Ампера. Что при таком освещении гарантирует заряд АКБ.

Замеры показали, при хорошем солнечном деньке результат будет лучше.

К тому времени погода ухудшалась, тучи закрыли, солнышко полностью и мне стало интересно, а что покажет при таком раскладе. Это же практически вечерние сумерки…

Небо выглядело так, специально снял линию горизонта. Да впрочем, на самом стекле батареи видно небо как в зеркало.

Напряжение при таком раскладе 20,2 вольта. Как уже говорилось 21в. это практически константа.

Ток короткого замыкания 2,48А. В общем, то, для такого освещения замечательно! Практически равен одной батареи при хорошем солнышке.

Ток заряда АКБ 1,85 Ампера. Ну что сказать… Даже в сумерки АКБ будет заряжаться.

Вывод построена солнечная батарея, не уступающая по характеристикам промышленным образцам. Ну а долговечность….., будем смотреть, время покажет.

Ах да, заряд батареи ведется через диоды Шоттки на 40 А. ну, что нашлось.

Так же хочу сказать про контроллеры. Все это красиво выглядит, но не стоит затраченных на контроллер денег.

Если вы дружите с паяльником, схемы очень просты. Делайте и получайте удовольствие от изготовления.

Ну вот, налетел ветер и оставшиеся запасные 5 элементов сорвались в неуправляемый полет….. результат осколки. Ну что поделать, безалаберность должна быть наказана. А с другой стороны…. Куда их?

Решили сделать из осколочков еще одну панельку, вольт на 5. На изготовление ушло 2 часа. Остатки материалов как раз пришлись в пору. Вот что получилось.

Замеры сделаны вечером.

Надо сказать, что при хорошем освещении сила тока короткого замыкания более 1 ампера.

Кусочки спаяны параллельно и последовательно. Цель, обеспечить примерно одинаковую площадь. Ведь сила тока равна самому маленькому элементу. А потому при изготовлении подбирайте элементы по площади освещения.

Настало время рассказать о практическом применении изготовленых мною солнечных батарей.

Весной установил две изготовленые панели на крыше, высота 8 метров под углом 35 градусов, оринтированые на юговосток. Такое орентирование было выбрано не случайно, потому как было замечено, что в данной широте, летом солнышко всходит в 4 утра и к 6-7 часам вполне сносно заряжает аккумуляторы током в 5-6 ампер, тоже касается и вечера. Каждая панель должна обязательно иметь свой диод. Дабы исключить выгорание элементов при отличающийся мощности панелей. И как следствие неоправданое снижение мощности панелей.
Спуск с высоты был выполнен многожильным проводом сечением 6мм2 каждая жила. Таким образом удалось достигнуть минимальных потерь в проводах.

В качестве накопителей энергии использованы старые еле-живые аккумуляторы 150А.ч,75А.ч,55А.ч, 60А.ч. Все аккумуляторы соеденены паралельно и учитывая потерю емкости, сумарно составляют ококло 100А.ч.
Контроллер заряда аккумулятора отсутствует. Хотя думаю установка контроллера необходима.Над схемой контроллера сечас работаю. Так как в течении дня аккумуляторы начинают кипеть. Потому приходится ежедневно сбрасывать излишки энергии, путем включения ненужной нагрузки. В моем случаее включаю освещение бани. 100 Вт. Так же в течении дня работает LCD телевизор примерно 105Вт, вентилятор 40Вт., а к вечеру добавляется энергосберегающая лампочка 20Вт.

Любителям проводить расчеты скажу: ТЕОРИЯ И ПРАКТИКА не одно и тоже. Так как такой "сендвичь" вполне прекрасно работает свыше 12 часов. при этом иногда заряжаем от него телефоны.Полного разряда аккумуляторов еще не достиг ни разу. Что соответственно перечеркивает расчеты.

В качестве преобразователя использован чуть- чуть переделаный для свободного пуска от аккумуляторов компьютерный бесперебойник (инвертор) 600В.А, что примерно соответствует нагрузке в 300Вт.
Так же хочу отметить, что батареи заряжаются и при яркой луне. При этом ток составляет 0,5-1 Ампер, думаю для ночи это совсем неплохо.

Конечно хотелось бы увеличить нагрузку, но для этого требуется мощьный инвертор. Планирую изготовить инвернтор сам по ниже приведенной схеме. Так как покупать инвертор за бешаные деньги НЕРАЗУМНО!

Есть модели калькуляторов на солнечных . Как правило, такая батарея состоит из трех фотоэлементов. Иногда их бывает больше. Элементы нужно извлечь, причем так, чтобы сохранить соединительные , припаянные к элементу или закрепленные на нем с помощью зажимов. Это существенно облегчит монтаж. Для изготовления самодельного источника энергии очень пригодится также чувствительный измерительный прибор – например, мультиметр. Отдельно взятый элемент выдает следующее количество электроэнергии с 1 кв. см площади:

Ток до 24 мА;
- напряжение 0,5 В.

Под нагрузкой получится половина напряжения, что для практических целей совершенно недостаточно. Если нужно большее напряжение или больший ток, нужно соединить несколько таких элементов между собой. Для этого необходима общая панель из диэлектрика (например, текстолита). Последовательное соединение (с обязательным соблюдением полярности) даст возможность увеличить выходное напряжение, но внутреннее сопротивление фотоэлементов довольно велико. Для его снижения (и увеличения выходной мощности ) полезно применить и параллельное включение отдельных элементов. Параллельно можно подключать как цепочки последовательно соединенных элементов батареи, так и отдельные элементы друг к другу.

В любом случае нужно следить за соблюдением полярности. Если удалось сохранить провода, присоединенные к отдельным пластинам, спаять элементы довольно легко, но это нужно с применением теплоотвода. Но при извлечении фотоэлементов сохранить провода удается не всегда. В этом случае можно применить пружинные зажимы и даже небольшие пружинки от шариковых ручек. Точно по такому же принципу можно собрать солнечную из селеновых пластин от старых фотоэкспонометров.

Сам элемент паять нельзя, поскольку в домашних условиях это приведет, скорее всего, к пробою.

Старые радиодетали или ненужные компьютерные мыши

Чаще всего под не оказывается готовых фотоэлементов. В этом случае можно воспользоваться имеющимися в наличии старыми радиодеталями. Например, соединив последовательно 20 точечных диодов в стеклянном корпусе (например, Д9, Д2), можно получить напряжение 1,2В. Разумеется, соблюдение полярности необходимо и в этом случае. Если корпус диода покрыт краской, ее нужно смыть или соскоблить. Диоды подходят любые, как кремниевые, так и германиевые. Дополнительное параллельное соединение диодов и цепочек диодов точно так же, как и в первом случае, помогают снизить внутреннее сопротивление батареи. С этой же целью можно применять фотодиоды от вышедших из строя компьютерных мышей. Возможно и использование светодиодов, которые также могут работать как фотоэлементы.

Батарея из транзисторов

Вместо диодов можно использовать транзисторы с металлическими корпусами. Здесь для доступа света нужно удалить металлический корпус или его верхнюю часть. Использовать можно переходы коллектор - база и эмиттер - база. В данном случае подходят как кремниевые, так и германиевые транзисторы, транзисторы с оборванным коллектором или эмиттером, но желательно, чтобы они были однотипными. Правила соединения те же, что указаны в первых двух способах. Полезно применение дополнительных отражающих , отбрасывающих свет на солнечную батарею.
Чем мощнее транзисторы, тем больший ток можно снять с батареи.

Некоторые тонкости

Транзисторы, как и вообще любые фотоэлементы, желательно предохранять от механических повреждений и попадания пыли. Для этого собранную батарею всего закрыть сверху. Подходит прозрачная или тонкое кварцевое стекло. Можно применять и тонкое оргестекло. Обычное оконное стекло или, скажем, триплекс, не подходят, так как задерживает ультрафиолетовые лучи.

Важно правильно обеспечить положение батареи относительно солнца, поскольку от этого зависит эффективность ее работы. КПД солнечных батарей, сделанных дома, довольно низкий и не превышает 10%. Получить электроэнергию можно и не в очень солнечный день, но батарея не должна находиться в сильно затененном месте. Напряжения хватит, чтобы зарядить аккумуляторы где-нибудь на даче или в походе. Кстати, таким способом можно даже осветить темный подвал, если снаружи батарею, а внутри – светодиод.

В течение светового дня на поверхность планеты поступают потоки солнечной энергии. Ученые и инженеры давно придумали, каким способом можно ее использовать. Преобразовывать энергию дневного светила позволяют солнечные батареи. Их эффективность пока что далека от идеальной, но со временем она будет увеличиваться благодаря работе специалистов.

Инструкция

Работа солнечной батареи основана на физических свойствах полупроводниковых элементов. Фотоны света выбивают электроны с внешнего радиуса атомов. При этом образуется значительное число свободных электронов. Если теперь замкнуть цепь, по ней будет протекать электрический ток. Он, впрочем, слишком мал, чтобы можно было ограничиться использованием одного-двух фотоэлементов.

Обычно отдельные компоненты соединяют в систему, чтобы образовалась батарея. Из нескольких подобных батарей формируют модули. Чем большее число фотоэлементов соединяется вместе, тем выше эффективность технической системы. Значение имеет также и положение солнечной батареи относительно светового потока. Количество энергии прямо зависит от угла, под которым на фотоэлементы падают солнечные лучи.

Одна из основных рабочих характеристик солнечной батареи – коэффициент полезного действия (КПД). Он определяется как результат деления мощности получаемой энергии на мощность светового потока, который падает на рабочую поверхность батареи. К настоящему времени КПД солнечных батарей, используемых на практике, колеблется в пределах от 10 до 25 процентов.

Осенью 2013 года в печати появились сообщения о том, что немецким инженерам удалось создать экспериментальный фотоэлемент, КПД которого приближается к 45%. Чтобы добиться таких невероятных для стандартной солнечной батареи показателей, конструкторам пришлось использовать четырехэтажную схему компоновки фотоэлемента. Это позволило увеличить общее число полезных полупроводниковых переходов.

Специалисты подсчитали, что в будущем вполне возможно будет достичь более высоких показателей КПД, вплоть до 85%. В чем причина нынешнего отставания батареи от расчетных характеристик? Разница между реальными цифрами и теоретически возможными показателями объясняется свойствами тех материалов, которые используются для изготовления батарей. Обычно панели делают из кремния, который может поглощать лишь инфракрасное излучение. А вот энергия ультрафиолетовых лучей почти не используется.

Один из путей повышения эффективности солнечных батарей – использование многослойных конструкций. Такой модуль включает в себя несколько тонких слоев, изготовленных из разнородных материалов. Вещества при этом подбирают так, чтобы слои были согласованы с точки зрения поглощения энергии. В теории подобные многослойные «пироги» могут обеспечивать КПД, доходящий почти до 90%.

Еще одно перспективное направление разработок – применение панелей, выполненных из монокристаллов кремния. Этот материал пока что, к сожалению, существенно дороже поликристаллических аналогов. Таким образом, чтобы повысить эффективность солнечных батарей, приходится делать конструкцию более дорогостоящей, что увеличивает сроки окупаемости затрат.

Источники:

  • Поставлен новый рекорд эффективности солнечных батарей в 2019

Совет 3: Как сделать улучшенную солнечную панель в Minecraft

С модом Industrial Craft 2 в мир Minecraft приходят технологии двадцать первого столетия. Геймер имеет возможность создавать новейшие установки для производства энергии, автоматизации различных процессов и выполнения прочих игровых задач. Для первого из вышеперечисленных действий очень пригодится солнечная панель.

Отличие улучшенной солнечной панели от обычной

Такие источники энергии существовали в Industrial Craft с самого начала. Впрочем, геймеры были ими не очень довольны. Для действительно полноценного восполнения энергетических потребностей в игре требовалось сооружать просто огромное поле, состоящее сплошь из солнечных панелей. Кроме того, такие устройства были весьма капризными в плане погодных условий и времени суток. Они функционировали, по сути, только ясным днем, из-за чего толку от них было немного.

Потому разработчики мода создали для него специальный аддон - Advanced Solar Panels. Такое дополнение добавило в игру улучшенные панели для аккумуляции и преобразования солнечной энергии. Они стали более компактными, но при этом весьма емкими. Кроме того, они способны производить электричество даже ночной порой и в ненастье.

Ресурсы для создания такой панели простым методом

Крафтить подобную панель предполагается двумя способами - более простым и усложненным. В первом случае для ее создания потребуется солнечная батарея, композит, укрепленное стекло, улучшенная электросхема и усовершенствованный корпус механизма либо светящаяся укрепленная пластина - в зависимости от того, какая именно версия мода используется: 3.3.4 или более старая.

Композит получается, если сжимать специальный композитный слиток с помощью компрессора. Создается же этот исходный материал из сплава трех металлов: очищенного железа, бронзы и олова - в виде слитков или же пластин. Композит нужен также для изготовления укрепленного стекла. Для этого две его пластины устанавливают в крайние ячейки среднего вертикального либо горизонтального ряда верстака. Остальные слоты занимают стеклянные блоки. Из такого количества материалов получается семь единиц укрепленного стекла.

Солнечную батарею скрафтить намного сложнее. Здесь потребуется по три стеклянных блока и единиц угольной пыли, две электросхемы и генератор. Последний устанавливают в центр нижнего ряда крафтинговой сетки, по бокам от него располагают электросхемы, над ним и по верхним углам - угольную пыль, а остальные места достаются стеклу.

Улучшенная электросхема делается из обычной, которую непременно для этого надо поместить в центр станка. По углам его сетки встанет четырех единицы пыли редстоуна, в двух оставшихся вертикальных ячейках - светопыль (создаваемая при разрушении глоустона - светящегося камня из Ада), а в паре горизонтальных - лазурит.

Улучшенный корпус механизма делается из аналогичного простого устройства. Обычный корпус механизма нужно поставить в центральную ячейку верстака,по бокам от него расположить две единицы углепластика (получаемого путем компрессорного сжатия углеволокна), по углам - четыре пластины закаленного железа, а в оставшиеся две ячейки вставить композит.

Если же вместо такого корпуса механизма будет использоваться светящаяся укрепленная пластина, ее получают из немного других ресурсов. В центр станка на сей раз пойдет укрепленная пластина из железа и иридия, под нею будет вставлен алмаз, над нею - солнечная часть (из светопыли и двух единиц розовой материи), по бокам - ультрамарин, а по углам - красная пыль.

Сборка улучшенной солнечной панели при наличии нужных ресурсов не составит труда. Весь верхний ряд верстака будет занят тремя блоками укрепленного стекла, в центральный слот пойдет солнечная батарея, по бокам от нее - композит, под ним - две улучшенных электросхемы, а между ними - усовершенствованный корпус механизма либо светящаяся укрепленная пластина.

Усложненный способ крафтинга экологически чистого источника энергии

Изготовление улучшенной солнечной панели по более сложному рецепту должно осуществляться примерно так же. Единственное серьезное отличие - здесь вместо укрепленного стекла будет использоваться светящаяся стеклянная панель в таком же количестве - три штуки.

Для ее изготовления сперва надо скрафтить светящийся уран. Для этого его слиток в обогащенном виде необходимо поместить в центр верстака, а по бокам, снизу и сверху поставить четыре единицы светопыли. Таких изделий потребуется две штуки.

Слитки светящегося урана пойдут в крайние ячейки среднего горизонтального ряда станка, между ними встанет светопыль, а остальные шесть слотов займет укрепленное стекло. В итоге получатся светящиеся стеклянные панели, причем в достаточном количестве - шесть штук (этого хватит аж на две улучшенных солнечных панели).

Желание сделать систему энергообеспечения частного дома более эффективной, экономичной и чистой с экологической точки зрения заставляет искать новые источники энергии. Одним из способов модернизации является установка солнечных батарей, способных преобразовывать энергию солнца в электрический ток. Существует прекрасная альтернатива дорогостоящему оборудованию - солнечная батарея, сделанная своими руками, которая позволит ежемесячно экономить средства из семейного бюджета. О том, как такую вещь соорудить, мы сегодня и будем говорить. Обозначим все подводные камни и расскажем как их обойти.

Общую информацию о конструктивных особенностях солнечных батарей смотрите на видео:

Разработка проекта солнечной энергосистемы

Проектирование необходимо для более удачного размещения панелей на крыше дома. Чем больше солнечных лучей попадет на поверхность батарей и чем выше их интенсивность, тем больше энергии они произведут. Для установки понадобится южная сторона кровли. В идеале лучи должны падать под углом 90 градусов, поэтому следует определить, в каком именно положении работа модулей принесет больше пользы.

Дело в том, что самодельная солнечная батарея, в отличие от заводской, не имеет специальных датчиков движения и концентраторов. Для изменения угла наклона существует возможность изготовить механизм на ручном управлении. Он позволит устанавливать модули почти вертикально в зимний период, когда солнце стоит низко над горизонтом, и опускать их летом, когда солнцестояние достигает своего пика. Вертикальное зимнее расположение имеет и защитную функцию: оно препятствует скапливанию на панелях снега и наледи, чем продлевает срок эксплуатации модулей.

Энергоэффективность модульной конструкции можно увеличить, если создать простейший механизм управления, который позволит менять угол наклона батареи в зависимости от времени года и даже времени суток

Возможно, перед монтажом батарей потребуется усиление кровельной конструкции, так как комплект из нескольких панелей имеет довольно большую массу. Необходимо вычислить нагрузку на крышу с учетом тяжести не только солнечных батарей, но и снежного пласта. Вес системы во многом зависит от материалов, которые применяются при ее изготовлении.

Количество панелей и их размер рассчитывают исходя из требующей мощности. Например, 1м² модуля производит приблизительно 120 Вт, этого не хватит даже для полноценного освещения жилых помещений. Примерно 1 кВт энергии при 10м² панелей позволит функционировать осветительным приборам, телевизору и компьютеру. Соответственно, солнечная конструкция площадью 20м² обеспечит нужды семьи из 3 человек. Приблизительно на такие размеры следует рассчитывать, если частный дом предназначен для постоянного проживания.

Изготовление солнечной батареи не обязательно заканчивается первоначальной сборкой, в дальнейшем можно наращивать элементы, тем самым увеличивая КПД оборудования

Варианты модулей для самостоятельной сборки

Основное назначение солнечной панели – генерировать энергию солнечных лучей и преобразовывать ее в электрическую. Полученный электроток представляет собой поток свободных электронов, высвобожденных световыми волнами. Для самостоятельной сборки оптимальным вариантом являются моно- и поликристаллические преобразователи, так как аналоги еще одного вида – аморфные – в течение первых двух лет снижают свою мощность на 20-40%.

Стандартные монокристаллические элементы имеют размеры 3 х 6 дюймов и довольно хрупкую структуру, поэтому работать с ними нужно крайне бережно и аккуратно

Разные виды кремниевых пластин имеют свои плюсы и минусы. Например, поликристаллические модули отличаются довольно низким КПД – до 9%, тогда как КПД монокристаллических пластин достигает 13%. Первые сохраняют показатели мощности даже в облачную погоду, но служат в среднем 10 лет, мощность вторых резко падает в пасмурные дни, зато они прекрасно функционируют на протяжении 25 лет.

Самодельное устройство должно быть функциональным и надежным, поэтому часть деталей лучше приобрести в готовом виде. Перед тем, как сделать солнечную батарею по индивидуальному проекту, загляните на сайт eBay, где можно обнаружить огромный выбор модулей с незначительным браком. Легкая поломка не влияет на качество работы, зато заметно уменьшает стоимость панелей. Предположим, монокристаллический модуль Solar Cells, расположенный на стеклотекстолитовой плате, стоит чуть больше 15 долларов, а поликристаллический комплект из 72 штук – около 90 долларов.

Лучший готовый вариант солнечного элемента - панель с проводниками, которые требуют лишь последовательного соединения. Модули без проводников стоят дешевле, но увеличивают время сборки батареи в несколько раз

Инструкция по изготовлению солнечной батареи

Вариантов самостоятельной сборки солнечных батарей множество. Технология зависит от количества солнечных элементов, приобретенных заранее, и дополнительных материалов, необходимых для изготовления корпуса. Важно запомнить: чем больше общая площадь панелей, тем мощнее оборудование, но вместе с тем вырастает и вес конструкции. В одной батарее рекомендуют применять одинаковые модули, так как эквивалентность тока приравнивается к показателям меньшего из элементов.

Сборка модульного каркаса

Дизайн модулей, как и их размеры, могут быть произвольными, поэтому вместо цифр ориентироваться следует на фото и выбрать любой индивидуальный вариант, подходящий для конкретных расчетов.

Наиболее дешевые солнечные элементы - панели без проводников. Чтобы сделать их готовыми к сборке батареи, необходимо первоначально припаять проводники, а это долгий и кропотливый процесс

Для изготовления корпуса, внутри которого будут закреплены солнечные элементы, необходимо подготовить следующий материал и инструмент:

  • листы фанеры выбранного размера;
  • невысокие рейки для бортиков;
  • клей универсальный или для древесины;
  • уголки и саморезы для крепежа;
  • дрель;
  • плиты ДВП;
  • куски оргстекла;
  • краска.

Берем кусок фанеры, который будет играть роль основания, и по периметру приклеиваем невысокие бортики. Рейки по краям листа не должны загораживать солнечные элементы, поэтому следим, чтобы высота их не превышала ¾ дюйма. Для надежности каждую приклеенную рейку дополнительно привинчиваем саморезами, а углы можно скрепить металлическими уголками.

Деревянный каркас - наиболее доступный вариант для размещения солнечных элементов. Его можно заменить рамой из алюминиевого уголка или покупным набором рама + стекло

Для вентиляции высверливаем отверстия в нижней части корпуса и по бортикам. Отверстий в крышке быть не должно, так как это грозит попаданием влаги. Крепление элементов будет производится на листы ДВП, которые можно заменить любым похожим материалом, главное условие – он не должен проводить электроток.

Маленькие отверстия для вентиляции необходимо просверлить по всей площади подложки, включая бортики и серединную рейку. Оно позволят регулировать уровень влаги и давления внутри каркаса

Крышку вырезаем из оргстекла, подгоняя под размеры корпуса. Обычное стекло слишком хрупкое для размещения на крыше. Для защиты деревянных частей используем специальную пропитку или краску, которой следует обработать каркас и подложку со всех сторон. Неплохо, если оттенок краски каркаса будет сочетаться с цветом кровельного покрытия.

Покраска выполняет не столько эстетическую функцию, сколько защитную. Каждую деталь следует покрыть минимум 2-3 слоями краски, чтобы в дальнейшем древесину не покоробило от влажного воздуха или перегрева

Монтаж солнечных элементов

Все солнечные модули раскладываем ровными рядами на подложке обратной стороной вверх, чтобы произвести пайку проводников. Для работы потребуется паяльник и припой. Места пайки предварительно необходимо обработать специальным карандашом. Для начала можно потренироваться на двух элементах, соединив их последовательно. Так же последовательно, цепочкой, соединяем все элементы на подложке, в результате должна получиться «змейка».

Каждый элемент устанавливаем строго по разметке и следим за тем, чтобы проводники соседних элементов пересекались в местах пайки

Соединив все элементы, аккуратно поворачиваем их лицевой стороной вверх. Если модулей много, придется пригласить помощников, так как одному спаянные элементы, не повредив, повернуть достаточно сложно. Но перед этим намазываем модули клеем, чтобы прочно закрепить их на панели. В качестве клея лучше использовать силиконовый герметик, причем наносить его следует строго по центру элемента, в одной точке, а не по краям. Это необходимо для предохранения пластин от поломок, если вдруг произойдет небольшая деформация основания. Лист фанеры может прогнуться или разбухнуть из-за изменения влажности, и стабильно приклеенные элементы просто треснут и выйдут из строя.

Закрепив модули на подложке, можно произвести пробный запуск панели и проверить функциональность. Затем основу помещаем в готовый уже каркас и фиксируем по краям шурупами. Чтобы исключить разряд аккумулятора через солнечную батарею, на панель устанавливаем блокировочный диод, закрепляя его герметиком.

Для соединения цепочек можно использовать медный провод или оплетку кабеля, которые фиксируют каждый элемент с обеих сторон, а затем закрепляются герметиком

Пробное тестирование помогает сделать предварительные расчеты. В данном случае они оказались верными - на солнце без нагрузки батарея производит 18,88 В

Сверху установленные элементы накрываем защитным экраном из оргстекла. Перед тем, как зафиксировать его, вновь проверяем работоспособность конструкции. Кстати, тестировать модули можно и в течении всего процесса установки и пайки, группами по нескольку штук. Следим за тем, чтобы герметик просох окончательно, так как его испарения могут покрыть оргстекло непрозрачной пленкой. Выходной провод оснащаем двухконтактным разъемом, чтобы в дальнейшем можно было использовать контроллер.

Одна панель собрана и полностью готова к работе. Все оборудование, включая купленные в интернете элементы, обошлось в 105 долларов

Фотоэлектрические системы частного дома

Электрические домашние системы энергообеспечения с использованием солнечных элементов можно разделить на 3 вида:

  • автономная;
  • гибридная;
  • безаккумуляторная.

Если дом подключен к центральной энергосети, то оптимальным вариантом будет смешанная система: днем питание производится от солнечных батарей, а ночью – от аккумуляторов. Центральная сеть в данном случае является резервом. Когда нет возможности подключиться к центральному энергоснабжению, его заменяют топливными генераторами – бензиновыми или дизельными.

Контроллер необходим для предотвращения короткого замыкания в момент максимальной нагрузки, аккумулятор – для накопления энергии, инвертор – для распределения и подачи ее к потребителю

При выборе наиболее удачного варианта следует учитывать время суток, в которое происходит максимальное потребление энергии. В частных домах пиковый период выпадает на вечер, когда солнце уже зашло, поэтому логичным будет использовать либо подключение к общей сети, либо дополнительное применение генераторов, так как солнечное энергоснабжение происходит в дневное время.

В фотоэлектрических системах энергоснабжения используют сети и с постоянным, и с переменным током, причем второй вариант подходит для размещения приборов на расстоянии более 15 м

Для дачников, режим работы которых часто совпадает со световым днем, подходит солнечная энергосберегающая система, которая начинает функционировать вместе с восходом солнца, а заканчивает вечером.

Жизнь в стиле «Органик», столь популярная идея в последние годы, предполагает гармоничные «отношения» человека с окружающей средой. Камнем преткновения любого экологического подхода является использование полезных ископаемых для получения энергии.

Выбросы токсичных веществ и углекислоты в атмосферу, выделяющихся при сгорании ископаемого топлива, постепенно убивают планету. Поэтому концепция «зеленой энергии», которая не вредит окружающей среде, является базовой основой многих новых энерготехнологий. Одним из таких направлений получения экологически чистой энергии является технология преобразования солнечного света в электрический ток. Да, именно так, речь пойдет о солнечных батареях и возможности установки систем автономного энергообеспечения в загородном доме.

В настоящий момент энергоустановки промышленного изготовления на базе солнечных батарей, применяемые для полного энерго- и теплообеспечения коттеджа, стоят не менее 15-20 тыс. долларов при гарантированном сроке эксплуатации около 25 лет. Стоимость любой гелиевой системы в перерасчете соотношения гарантированного срока эксплуатации к средним годичным затратам на коммунальное содержание загородного дома достаточно высокая: во-первых, сегодня средняя стоимость солнечной энергии соизмерима с покупкой энергоресурсов из центральных энергосетей, во-вторых, требуются одномоментные капитальные вложения для установки системы.

Обычно принято разделять гелиосистемы, предназначенные для тепло- и энергообеспечения. В первом случае используется технология солнечного коллектора, во втором — фотоэлектрический эффект для генерации электрического тока в солнечных батареях. Мы хотим рассказать о возможности самостоятельного изготовления солнечных батарей.

Технология ручной сборки солнечной энергетической системы достаточно проста и доступна. Практически каждый россиянин может собрать индивидуальные энергосистемы с высоким КПД при сравнительно низких затратах. Это выгодно, доступно и даже модно.

Выбор солнечных элементов для солнечной панели

Приступая к изготовлению солнечной системы, нужно обратить внимание, что при индивидуальной сборке нет необходимости в одномоментной установке полнофункциональной системы, её вполне можно наращивать постепенно. Если первый опыт оказался удачным, то имеет смысл расширять функциональность гелиосистемы.

По своей сути, солнечная батарея — это генератор, работающий на основе фотоэлектрического эффекта и преобразовывающий солнечную энергию в электрическую. Кванты света, попадающие на кремниевую пластину, выбивают электрон с последней атомной орбиты кремния. Этот эффект создает достаточное количество свободных электронов, образующих поток электрического тока.

Перед сборкой батареи нужно определиться в типе фотоэлектрического преобразователя, а именно: монокристаллическом, поликристаллическом и аморфном. Для самостоятельной сборки солнечной батареи выбирают доступные в продаже монокристаллические и поликристаллические солнечные модули.


Вверху: Монокристаллические модули без припаянных контактов. Внизу: Поликристаллические модули с припаянными контактами

Панели на основе поликристаллического кремния имеют достаточно низкий КПД (7-9%), но этот недостаток нивелируется тем, что поликристаллы практически не понижают мощность при облачности и пасмурной погоде, гарантийная долговечность таких элементов составляет около 10 лет. Панели на основе монокристаллического кремния имеют КПД около 13% при сроке эксплуатации около 25 лет, но эти элементы сильно снижают мощность при отсутствии прямого солнечного света. Показатели КПД кристаллов кремния от разных производителей могут существенно варьироваться. По практике работы солнечных электростанций в полевых условиях можно говорить о сроке службы монокристаллических модулей более 30 лет, а для поликристаллических — более 20 лет. Причем за весь период эксплуатации потеря мощности у кремниевых моно- и поликристаллических элементов составляет не более 10%, когда у тонкопленочных аморфных батарей за первые два года мощность снижается на 10-40%.



Солнечные элементы Evergreen Solar Cells с контактами в наборе 300 шт.

На аукционе Еbay можно приобрести набор Solar Cells для сборки солнечной батареи из 36 и 72 солнечных элементов. Такие наборы доступны в продаже и в России. Как правило, для самостоятельной сборки солнечных батарей используются солнечные модули В-типа, то есть модули, отбракованные на промышленном производстве. Эти модули не теряют своих эксплуатационных показателей и значительно дешевле. Некоторые поставщики предлагают солнечные модули на стеклотекстолитовой плате, что предполагает высокий уровень герметичности элементов, а, соответственно, надежности.

Название Характеристики Стоимость, $
Everbright Solar Cells (Еbay) без контактов поликристаллические, набор - 36 шт., 81х150 мм, 1,75 W (0,5 В), 3А, эффективность (%) - 13
в наборе с диодами и кислотой для паяния в карандаше
$46.00
$8.95доставка
Solar Cells (США новые) монокристаллические, 156х156 мм, 81х150 мм, 4W (0,5 В), 8А, эффективность (%) - 16.7-17.9 $7.50
монокристаллические, 153х138 мм, U хол. хода - 21,6V, I корот. зам. - 94 mA, Р - 1,53W, эффективность (%) - 13 $15.50
Solar Cells на стеклотекстолитовой плате поликристаллические, 116х116 мм, U хол. хода - 7,2V, I корот. зам. - 275 mA., Р - 1,5W, эффективность (%) - 10 $14.50
$87.12
$9.25 доставка
Solar Cells (Еbay) без контактов поликристаллические, набор - 72 шт., 81х150 мм 1.8W $56.11
$9.25 доставка
Solar Cells (Еbay) с контактами монокристаллические, набор - 40 шт., 152х152 мм $87.25
$14.99 доставка

Разработка проекта гелиевой энергосистемы

Проектирование будущей гелиосистемы во многом зависит от способа её установки и монтажа. Солнечные батареи должны быть установлены под наклоном, чтобы обеспечить попадание прямых солнечных лучей под прямым углом. Производительность солнечной панели во многом зависит от интенсивности световой энергии, а также от угла падения солнечных лучей. Размещение солнечной батареи относительно солнца и угол наклона зависит от географического расположения гелиевой системы и времени года.


Сверху вниз: Монокристаллические солнечные панели (по 80 ватт) на даче установлены практически вертикально (зима). Монокристаллические солнечные панели на даче имеют меньший угол (весна)ю Механическая система управления углом наклона солнечной батареи.

Промышленные гелиосистемы часто снабжены датчиками, которые обеспечивают ротационное движение солнечной панели по направлению движения солнечных лучей, а также зеркалами-концентраторами солнечного света. В индивидуальных системах такие элементы значительно усложняют и удорожают систему, поэтому не применяются. Может быть применена простейшая механическая система управлением углом наклона. В зимнее время солнечные панели должны быть установлены практически вертикально, это также защищает панель от налегания снега и обледенения конструкции.



Схема расчета угла наклона солнечной панели в зависимости от времени года

Солнечные батареи устанавливаются с солнечной стороны здания, чтобы обеспечить максимально доступный объем солнечной энергии в светлое время суток. В зависимости от географического расположения и уровня солнцестояния вычисляется угол наклона батареи, который наиболее подходит для вашего местоположения.

При усложнении конструкции можно создать систему управления углом наклона солнечной батареи в зависимости от времени года и углом поворота панели в зависимости от времени суток. Энергоэффективность такой системы будет выше.

При проектировании солнечной системы, которая будет устанавливаться на крышу дома, нужно обязательно выяснить, сможет ли кровельная конструкция выдержать требуемую массу. Самостоятельная разработка проекта предполагает расчет кровельной нагрузки с учетом веса снежного покрова в зимнее время.



Выбор оптимального статического угла наклона для кровельной солнечной системы монокристаллического типа

Для изготовления солнечных панелей можно выбирать различные материалы по удельному весу и другим характеристикам. При выборе материалов конструкции необходимо учитывать максимально допустимую температуру нагрева солнечного элемента, так как температура солнечного модуля, работающего на полную мощность, не должна превышать 250С. При превышении пиковой температуры солнечный модуль резко теряет свою способность преобразовывать солнечный свет в электрический ток. Готовые гелиосистемы для индивидуального использования, как правило, не предполагают охлаждение солнечных элементов. Самостоятельное изготовление может подразумевать охлаждение гелиосистемы или управление углом наклона солнечной панели для обеспечения функциональной температуры модуля, а также выбор соответствующего прозрачного материала, поглощающего ИК-излучение.

Грамотная конструкция солнечной системы позволяет обеспечить требуемую мощность солнечной батареи, которая будет приближаться к номинальной. При расчете конструкции нужно учитывать, что элементы одного типа дают одинаковое напряжение, не зависящее от размера элементов. Причем сила тока у крупноразмерных элементов будет больше, но и батарея будет значительно тяжелее. Для изготовления солнечной системы всегда берутся солнечные модули одного размера, так как максимальный ток будет ограничен максимальным током малого элемента.

Расчеты показывают, что в среднем в ясный солнечный день можно получить с 1 м солнечной панели не более 120 Вт мощности. Такая мощность не обеспечит работу даже компьютера. Система в 10 м дает более 1 кВт энергии и может обеспечивать электроэнергией работу основных бытовых приборов: светильников, телевизора, компьютера. Для семьи из 3-4 человек необходимо около 200-300 кВт в месяц, поэтому солнечная система, установленная с южной стороны, размером 20 м может вполне обеспечить семейные энергопотребности.

Если рассматривать среднестатистические данные по электроснабжению индивидуального жилого дома, то: ежедневное энергопотребление составляет 3 кВт ч, солнечная радиация с весны по осень — 4 кВт ч/м в день, пиковая мощность потребления — 3кВт (при включении стиральной машины, холодильника, утюга и электрочайника). С целью оптимизации энергопотребления для освещения внутри дома важно использовать лампы переменного тока с низким энергопотреблением — светодиодные и люминесцентные.

Изготовление каркаса солнечной батареи

В качестве каркаса солнечной батареи используется алюминиевый уголок. На аукционе Еbay можно приобрести готовые рамы для солнечных батарей. Прозрачное покрытие выбирается по желанию, исходя из характеристик, которые необходимы для данной конструкции.



Комплект рамы со стеклом для солнечной батареи, стоимость от 33 долларов

При выборе прозрачного защитного материала можно также ориентироваться на следующие характеристики материала:

Материал Показатель преломления Свето-пропуска-ние, % Удельный вес г/см 3 Размер листа, мм Толщина, мм Стоимость, руб./м 2
Воздух 1,0002926
Стекло 1,43-2,17 92-99 3,168
Оргстекло 1,51 92-93 1,19 3040х2040 3 960.00
Поликарбонат 1,59 до 92 0,198 3050 х2050 2 600.00
Плексиглас 1,491 92 1,19 2050х1500 11 640.00
Минеральное стекло 1,52-1,9 98 1,40

Если рассматривать показатель преломления света в качестве критерия выбора материала. Самый минимальный коэффициент преломления имеет плексиглас, более дешевым вариантом прозрачного материала является отечественное оргстекло, менее подходящим — поликарбонат. В продаже имеется поликарбонат с антиконденсатным покрытием, также этот материал обеспечивает высокий уровень термозащиты. При выборе прозрачных материалов по удельному весу и способности поглощать ИК-спектр лучшим будет поликарбонат. К лучшим прозрачным материалам для солнечных батарей относятся материалы с высоким светопропусканием.

При изготовлении солнечной батареи важно выбирать прозрачные материалы, которые не пропускают ИК-спектр и, таким образом, снижают нагревание кремниевых элементов, теряющих свою мощность при температуре свыше 250С. В промышленности используются специальные стекла, имеющие оксидно-металлическое покрытие. Идеальным стеклом для солнечных панелей считается тот материал, которые пропускает весь спектр кроме ИК-диапазона.



Схема поглощения УФ и ИК излучения различными стеклами.
а) обычное стекло, б) стекло с ИК-поглощением, в) дуплекс с термопоглощающим и обычным стеклом.

Максимальное поглощение ИК-спектра обеспечит защитное силикатное стекло с оксидом железа (Fe 2 O 3), но оно имеет зеленоватый оттенок. ИК-спектр хорошо поглощает любое минеральное стекло за исключением кварцевого, оргстекло и плексиглас относятся к классу органических стекол. Минеральное стекло более устойчиво к повреждениям поверхности, но является очень дорогим и недоступным. Для солнечных батарей также применяется специальное антибликовое сверхпрозрачное стекло, пропускающее до 98% спектра. Также это стекло предполагает поглощение большей части ИК-спектра.

Оптимальный выбор оптических и спектральных характеристик стекла значительно повышает эффективность фотопреобразования солнечной панели.



Солнечная панель в корпусе из оргстекла

Во многих мастер-классах по изготовлению солнечных батарей рекомендуется использовать оргстекло для передней и задней панели. Это позволяет проводить инспекцию контактов. Однако конструкцию из оргстекла сложно назвать полностью герметичной, способной обеспечить бесперебойную эксплуатацию панели в течение 20 лет работы.

Монтаж корпуса солнечной батареи

В мастер-классе показывается изготовление солнечной панели из 36 поликристаллических солнечных элементов размером 81x150 мм. Исходя из этих размеров, можно вычислить размеры будущей солнечной батареи. При расчете размеров важно между элементами делать небольшое расстояние, которое будет учитывать изменение размеров основы под атмосферным воздействием, то есть между элементами должно быть 3-5 мм. Результирующий размер заготовки должен быть 835х690 мм при ширине уголка 35 мм.

Самодельная солнечная батарея, сделанная с использованием алюминиевого профиля, наиболее похожа на солнечную панель фабричного изготовления. При этом обеспечивается высокая степень герметичности и прочности конструкции.
Для изготовления берется алюминиевый уголок, и выполняются заготовки рамки 835х690 мм. Чтобы можно было провести крепление метизов, в раме следует сделать отверстия.
На внутреннюю часть уголка дважды наносится силиконовый герметик.
Обязательно проследите, чтобы не было незаполненных мест. От качества нанесения герметика зависит герметичность и долговечность батареи.
Далее в раму кладется прозрачный лист из выбранного материала: поликарбоната, оргстекла, плексигласа, антибликового стекла. Важно силикону дать высохнуть на открытом воздухе, иначе испарения создадут пленку на элементах.
Стекло нужно тщательно прижать и зафиксировать.
Для надежного крепления защитного стекла понадобятся метизы. Нужно закрепить 4 угла рамки и по периметру разместить два метиза с длинной стороны рамки и по одному метизу с короткой стороны.
Метизы фиксируются при помощи шурупов.
Шурупы плотно затягиваются при помощи шуруповерта.
Каркас солнечной батареи готов. Перед креплением солнечных элементов, необходимо очистить стекло от пыли.

Подбор и пайка солнечных элементов

В настоящий момент на аукционе Еbay представлен огромный ассортимент изделий для самостоятельного изготовления солнечных батарей.



Набор Solar Cells включает комплект из 36 поликристаллических кремниевых элементов, проводники для элементов и шины, диоды Шотке и карандаш с кислотой для паяния

Так как солнечная батарея, сделанная своими руками, практически в 4 раза дешевле готовой, самостоятельное изготовление — это значительная экономия средств. На Еbay можно приобрести солнечные элементы с дефектами, но они не теряют своей функциональности, таким образом, стоимость солнечной батареи может существенно сократиться, если вы можете дополнительно пожертвовать внешним видом батареи.



Поврежденные фотоэлементы не теряют своей функциональности

При первом опыте лучше приобретать наборы для изготовления солнечных панелей, в продаже имеются солнечные элементы с припаянными проводниками. Пайка контактов — это достаточно сложный процесс, сложность усугубляется хрупкостью солнечных элементов.

Если вы приобрели кремниевые элементы без проводников, то сначала необходимо провести пайку контактов.

Так выглядит поликристаллический кремниевый элемент без проводников.
Проводники нарезаются с помощью картонной заготовки.
Необходимо аккуратно положить проводник на фотоэлемент.
На место припаивания нанести кислоту для паяния и припой. Проводник для удобства фиксируется с одной стороны тяжелым предметом.
В таком положении необходимо аккуратно припаять проводник к фотоэлементу. Во время пайки нельзя нажимать на кристалл, потому что он очень хрупкий.

Пайка элементов — это достаточно кропотливая работа. Если не удастся получить нормального соединения, то необходимо повторить работу. По нормативам серебряное напыление на проводнике должно выдерживать 3 цикла пайки при допустимых тепловых режимах, на практике сталкиваешься с тем, что напыление разрушается. Разрушение серебряного напыления происходит из-за использования паяльников с нерегулируемой мощностью (65Вт), этого можно избежать, если понизить мощность следующим образом — нужно последовательно с паяльником включить патрон с лампочкой в 100 Вт. Номинальная мощность нерегулируемого паяльника слишком высока для пайки кремниевых контактов.

Даже если продавцы проводников уверяют, что припой на соединителе имеется, его лучше нанести дополнительно. Во время пайки старайтесь аккуратно обращаться с элементами, при минимальном усилии они лопаются; не стоит складывать элементы пачкой, от веса нижние элементы могут треснуть.

Сборка и пайка солнечной батареи

При первой самостоятельной сборке солнечной батареи лучше воспользоваться разметочной подложкой, которая поможет расположить элементы ровно на некотором расстоянии друг от друга (5 мм).



Разметочная подложка для элементов солнечной батареи

Основа выполняется из листа фанеры с маркированием уголков. После пайки на каждый элемент с обратной стороны крепится кусок монтажной ленты, достаточно прижать заднюю панель к скотчу, и все элементы переносятся.



Монтажная лента, использованная для крепления, с обратной стороны солнечного элемента

При таком типе крепления сами элементы дополнительно не герметизируются, они могут свободно расширяться под действием температуры, это не приведет к повреждению солнечной батареи и разрыву контактов и элементов. Герметизации поддаются только соединительные части конструкции. Такой вид крепления больше подходит для опытных образцов, но вряд ли может гарантировать долгосрочную эксплуатацию в полевых условиях.

Последовательный план сборки батареи выглядит так:

Выкладываем элементы на стеклянную поверхность. Между элементами должно быть расстояние, что предполагает свободное изменение размеров без ущерба конструкции. Элементы нужно прижать грузами.
Пайку производим по приведенной ниже электросхеме. «Плюсовые» токоведущие дорожки размещены на лицевой стороне элементов, «минусовые» — на обратной стороне.
Перед пайкой нужно нанести флюс и припой, после аккуратно припаять серебряные контакты.
По такому принципу соединяются все солнечные элементы.
Контакты крайних элементов выводятся на шину, соответственно, на «плюс» и «минус». Для шины используется более широкий серебряный проводник, который имеется в наборе Solar Cells.
Рекомендуем также вывести «среднюю» точку, с ее помощью ставятся два дополнительных шунтирующих диода.
Клемма устанавливается также с внешней стороны рамы.
Так выглядит схема подключения элементов без выведенной средней точки.
Так выглядит клеммная планка с выведенной «средней» точкой. «Средняя» точка позволяет на каждую половину батареи поставить шунтирующий диод, который не даст батарее разряжаться при снижении освещения или затемнении одной половины.
На фото показан шунтирующий диод на «плюсовом» выходе, он противостоит разрядке аккумуляторов через батарею в ночное время и разрядке других батарей во время частичного затемнения.
Чаще в качестве шунтирующих диодов используют диоды Шотке. Они дают меньшую потерю на общей мощности электрической цепи.
В качестве токовыводящих проводов может быть использован акустический кабель в силиконовой изоляции. Для изоляции можно применить трубки из-под капельницы.
Все провода должны быть прочно зафиксированы силиконом.
Элементы могут быть соединены последовательно (см. фото), а не посредством общей шины, тогда 2-й и 4-й ряд необходимо повернуть на 1800 относительно 1-го ряда.

Основные проблемы сборки солнечной панели связаны с качеством пайки контактов, поэтому специалисты предлагают перед герметизацией панели ее протестировать.



Тестирование панели перед герметизацией, напряжение сети 14 вольт, пиковая мощность 65 Вт

Тестирование можно делать после пайки каждой группы элементов. Если вы обратите внимание на фотографии в мастер-классе, то часть стола под солнечными элементами вырезана. Это сделано намеренно, чтобы определить работоспособность электрической сети после пайки контактов.

Герметизация солнечной панели

Герметизация солнечных панелей при самостоятельном изготовлении — это самый спорный вопрос среди специалистов. С одной стороны, герметизация панелей необходима для повышения долговечности, она всегда применяется при промышленном изготовлении. Для герметизации зарубежные специалисты рекомендуют использовать эпоксидный компаунд «Sylgard 184», который дает прозрачную полимеризованную высокоэластичную поверхность. Стоимость «Sylgard 184» на Еbay составляет около 40 долларов.



Герметик с высокой степенью эластичности «Sylgard 184»

С другой стороны, если вы не хотите нести дополнительные затраты, вполне можно использовать силиконовый герметик. Однако в этом случае не стоит полностью заливать элементы, чтобы избежать их возможного повреждения в процессе эксплуатации. В таком случае элементы к задней панели можно прикрепить при помощи силикона и герметизировать только края конструкции. Насколько эффективна такая герметизация, сказать сложно, но использовать не- рекомендованные гидроизоляционные мастики не советуем, очень высока вероятность разрыва контактов и элементов.

Перед началом герметизации необходимо подготовить смесь «Sylgard 184».
Сначала заливаются места стыков элементов. Смесь должна схватиться, чтобы закрепить элементы на стекле.
После фиксации элементов делается сплошной полимеризирующий слой эластичного герметика, распределить его можно с помощью кисточки.
Так выглядит поверхность после нанесения герметика. Герметизирующий слой должен просохнуть. После полного высыхания можно закрыть солнечную батарею задней панелью.
Так выглядит лицевая сторона самодельной солнечной панели после герметизации.

Схема электроснабжения дома

Системы электроснабжения домов с использованием солнечных батарей принято называть фотоэлектрическими системами, то есть системами, обеспечивающими генерацию энергии с использованием фотоэлектрического эффекта. Для индивидуальных жилых домов рассматриваются три фотоэлектрические системы: автономная система энергообеспечения, гибридная батарейно-сетевая фотоэлектрическая система, безаккумуляторная фотоэлектрическая система, подключенная к центральной системе энергоснабжения.

Каждая из систем имеет свое предназначение и преимущества, но наиболее часто в жилых домах применяют фотоэлектрические системы с резервными аккумуляторными батареями и подключением к централизованной энергосети. Питание электросети осуществляется при помощи солнечных батарей, в темное время суток от аккумуляторов, а при их разрядке — от центральной энергосети. В труднодоступных районах, где нет центральной сети, в качестве резервного источника энергоснабжения используются генераторы на жидком топливе.

Более экономной альтернативой гибридной батарейно-сетевой системе электроснабжения будет безаккумуляторная солнечная система, подсоединенная к центральной сети энергоснабжения. Электроснабжение осуществляется от солнечных батарей, а в темное время суток сеть питается от центральной сети. Такая сеть более применима для учреждений, потому что в жилых домах большая часть энергии потребляется в вечернее время.



Схемы трех типов фотоэлектрических систем

Рассмотрим типичную установку батарейно-сетевой фотоэлектрической системы. В качестве генератора электроэнергии выступают солнечные панели, которые подсоединены через соединительную коробку. Далее в сети устанавливается контроллер солнечного заряда, чтобы избежать короткого замыкания при пиковой нагрузке. Электроэнергия накапливается в резервных батареях-аккумуляторах, а также подается через инвертор на потребители: освещение, бытовую технику, электроплиту и, возможно, используется для нагревания воды. Для установки системы отопления эффективнее применять гелиоколлекторы, которые относятся к альтернативной гелиотехнологии.



Гибридная батарейно-сетевая фотоэлектрическая система с переменным током

Существует два типа электросетей, которые используются в фотоэлектрических системах: на базе постоянного и переменного тока. Использование сети переменного тока позволяет размещать электропотребители на расстоянии, превышающем 10-15 м, а также обеспечивать условно-неограниченную нагрузку сети.

Для частного жилого дома обычно используют следующие комплектующие фотоэлектрической системы:

  • суммарная мощность солнечных панелей должна составлять 1000 Вт, они обеспечат выработку около 5 кВт ч;
  • аккумуляторы с общей емкостью в 800 А/ч при напряжении 12 В;
  • инвертор должен иметь номинальную мощность 3кВт с пиковой нагрузкой до 6 кВт, входное напряжение 24-48 В;
  • контроллер солнечного разряда 40-50 А при напряжении в 24 В;
  • источник бесперебойного питания для обеспечения кратковременного заряда с током до 150 А.

Таким образом, для фотоэлектрической системы электроснабжения понадобится 15 панелей на 36 элементов, пример сборки которых приведен в мастер-классе. Каждая панель дает суммарную мощность в 65 Вт. Более мощными будут солнечные батареи на монокристаллах. Например, солнечная панель из 40 монокристаллов имеет пиковую мощность 160 Вт, однако такие панели чувствительны к пасмурной погоде и облачности. В этом случае солнечные панели на базе поликристаллических модулей оптимальны для использования в северной части России.